Accès gratuit
Review
Numéro
Rev. Fr. Geotech.
Numéro 148, 2016
Numéro d'article 4
Nombre de pages 22
Section Mécanique des roches
DOI https://doi.org/10.1051/geotech/2017001
Publié en ligne 9 mars 2017
  • Abraham O, Ben Slimane K, Cote P. 1998. Factoring anisotropy into iterative geometric reconstruction algorithms for seismic tomography. Int J Rock Mech Min Sci 35: 31–41. [CrossRef] [Google Scholar]
  • AGAP-Qualité. 1992. Géophysique appliquée. Code de bonne pratique. Disponible sur http://www.agapqualite.org/code-de-bonne-pratique.html, dernière consultation 2016/09/09. [Google Scholar]
  • Armand G, Leveau F, Nussbaum C, et al. 2014. Geometry and properties of the excavation-induced fractures at the Meuse/Haute-Marne URL drifts. Rock Mech Rock Eng 47: 21–41. [CrossRef] [Google Scholar]
  • Balland C, Renaud V. 2009. High-resolution velocity field imaging around a borehole: Excavation-damaged zone characterization. Geophysics 74: E223–E232. [CrossRef] [Google Scholar]
  • Balland C, Morel J, Armand G, Pettitt W. 2009. Ultrasonic velocity survey in Callovo-Oxfordian argillaceous rock during shaft excavation. Int J Rock Mech Min Sci 46: 69–79. [CrossRef] [Google Scholar]
  • Balland C, Morel J, Souley M. 2013. Ultrasonic sounding and monitoring of the excavation damaged zone in relation with drift support. In: ASEG Extended Abstracts 2013. Australian Society of Exploration Geophysicists (ASEG), pp. 1–4. [Google Scholar]
  • Baechler S, Lavanchy JM, Armand G, Cruchaudet M. 2011. Characterisation of the hydraulic properties within the EDZ around drifts at level − 490 m of the Meuse/Haute-Marne URL: a methodology for consistent interpretation of hydraulic tests. Phys Chem Earth, Parts A/B/C 36: 1922–1931. [CrossRef] [Google Scholar]
  • Blümling P, Bernier F, Lebon P, Martin CD. 2007. The excavation damaged zone in clay formations time-dependent behaviour and influence on performance assessment. Phys Chem Earth, Parts A/B/C 32: 588–599. [Google Scholar]
  • Bodet L. 2005. Limites théoriques et expérimentales de l’interprétation de la dispersion des ondes de Rayleigh : apport de la modélisation numérique et physique. Mémoire de thèse de doctorat, Nantes (France). [Google Scholar]
  • Bodet L, van Wijk K, Bitri A, et al. 2005. Surface-wave inversion limitations from laser-Doppler physical modeling. J Environ Eng Geophys 10: 151–162. [CrossRef] [Google Scholar]
  • Bossart P, Meier PM, Moeri A, Trick T, Mayor JC. 2002. Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus clay of the Mont Terri Rock Laboratory. Eng Geol 66: 19–38. [CrossRef] [Google Scholar]
  • Cosenza P, Ghorbani A, Florsch N, Revil A. 2007. Effects of drying on the low-frequency electrical properties of Tournemire argillites. Pure Appl Geophys 164: 2043–2066. [Google Scholar]
  • Côte P, Lagabrielle R. 1986. La tomographie sismique comme méthode de reconnaissance détaillée du sous-sol – exemple d’application au contrôle d’injection. Rev Fr Geotech 36: 47–53. [CrossRef] [Google Scholar]
  • Damaj J. 2006. Auscultation et surveillance des perturbations hydromécaniques d’ouvrages souterrains par méthodes ultrasonores. Mémoire de thèse de doctorat. Vandœuvre-les-Nancy, INPL (France). [Google Scholar]
  • Damaj J, Balland C, Armand G, Verdel T, Amitrano D, Homand F. 2007. Velocity survey of an excavation damaged zone: influence of excavation and reloading. Geol Soc Lond, Spec Publ 284: 41–55. [CrossRef] [Google Scholar]
  • Delle Piane C, Almqvist BS, MacRae CM, Torpy A, Mory AJ, Dewhurst DN. 2015. Texture and diagenesis of Ordovician shale from the Canning Basin, Western Australia: implications for elastic anisotropy and geomechanical properties. Mar Pet Geol 59: 56–71. [CrossRef] [Google Scholar]
  • Gélis C, Cabrera J, Barnichon JD, et al. 2010. Caractérisation de l’EDZ par méthodes sismiques et ultrasoniques. In : Journées nationales de géotechnique et de géologie de l’ingénieur« infrastructures, développement durable et énergie » (JNGG 2010), Laboratoire 3S-R. Grenoble, pp. 811–818. [Google Scholar]
  • Ghorbani A. 2007. Contribution au développement de la résistivité complexe et à ses applications en environnement. Mémoire de thèse de doctorat. Université Pierre-et-Marie-Curie, Paris (France). [Google Scholar]
  • Ghorbani A, Zamora M, Cosenza P. 2009. Effects of desiccation on the elastic wave velocities of clay-rocks. Int J Rock Mech Min Sci 46: 1267–1272. [CrossRef] [Google Scholar]
  • Gibert D, Nicollin F, Kergosien B, et al. 2006. Electrical tomography monitoring of the excavation damaged zone of the Gallery 04 in the Mont Terri rock laboratory: field experiments, modelling, and relationship with structural geology. Appl Clay Sci 33: 21–34. [CrossRef] [Google Scholar]
  • Hedan S, Cosenza P, Valle V, Dudoignon P, Fauchille AL, Cabrera J. 2012. Investigation of the damage induced by desiccation and heating of Tournemire argillite using digital image correlation. Int J Rock Mech Min Sci 51: 64–75. [CrossRef] [Google Scholar]
  • Hedan S, Fauchille AL, Valle V, Cabrera J, Cosenza P. 2014. One-year monitoring of desiccation cracks in Tournemire argillite using digital image correlation. Int J Rock Mech Min Sci 68: 22–35. [Google Scholar]
  • Hedan S, Valle V, Noiret A, Armand G, Cosenza P. 2016. Suivi des déformations par méthodes optiques en galerie souterraine (URL Meuse/Haute-Marne). In : Journées nationales de géotechnique et de géologie de l’ingénieur, Nancy (France). [Google Scholar]
  • Kruschwitz S, Yaramanci U. 2004. Detection and characterization of the disturbed rock zone in claystone with the complex resistivity method. J Appl Geophys 57: 63–79. [CrossRef] [Google Scholar]
  • La Vaissière R, Morel J, Noiret A, et al. 2014. Excavation-induced fractures network surrounding tunnel: properties and evolution under loading. Geol Soc Lond, Spec Publ 400: 279–291. [CrossRef] [Google Scholar]
  • La Vaissière R, Armand G, Talandier J. 2015. Gas and water flow in an excavation-induced fracture network around an underground drift: a case study for a radioactive waste repository in clay rock. J Hydrol 521: 141–156. [Google Scholar]
  • Lagabrielle R. 1998. Géophysique appliquée au génie civil. Techniques de l’ingénieur, référence C224 v3. [Google Scholar]
  • Lagabrielle R. 2007. Diagraphies et géophysique de forage. Techniques de l’ingénieur, C225 v3. [Google Scholar]
  • Lagarde J, Abraham O, Laguerre L, Côte P, Piguet J-P, Balland C, et al. 2006. Use of surface waves and seismic refraction for the inspection of circular concrete structures. Cem Concr Compos 28: 337–348. [CrossRef] [Google Scholar]
  • Le Gonidec Y, Schubnel A, Wassermann J, et al. 2012. Field-scale acoustic investigation of a damaged anisotropic shale during a gallery excavation. Int J Rock Mech Min Sci 51: 136–148. [CrossRef] [Google Scholar]
  • Leparoux D, Côte P, Gélis C, Cabrera JC. 2012. EDZ characterization with surface wave analysis: experimental and numerical study for defining feasibility in the context of the Tournemire Platform (France). Near Surf Geophys 10: 401–411. [CrossRef] [Google Scholar]
  • Loke MH, Barker RD. 1995. Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 60: 1682–1690. [CrossRef] [Google Scholar]
  • Magnin O, Côte P, Leparoux D, Ben Slimane K, Cabrera-Nunez J. 2008. Investigation géophysique pour caractériser l’endommagement autour d’ouvrages souterrains. In : Journées nationales de géotechnique et de géologie de l’ingénieur : insertion des grands ouvrages dans leur environnement, Nantes (France). [Google Scholar]
  • Manukyan E, Maurer H, Marelli S, Greenhalgh SA, Green AG. 2012. Seismic monitoring of radioactive waste repositories. Geophysics 77: EN73–EN83. [CrossRef] [Google Scholar]
  • Mari JL, Arens G, Chapellier D, Gaudiani P. 1998. Géophysique de gisement et de génie civil. Rueil-Malmaison : Édition Technip. [Google Scholar]
  • Maurer H, Spillmann T, Marschall P. 2014. Monitoring of induced stress changes using differential seismic travel time tomography. In: 2014 SEG Annual Meeting, Society of Exploration Geophysicists. [Google Scholar]
  • Mayor JC, Velasco M, García-Siñeriz JL. 2007. Ventilation experiment in the Mont Terri underground laboratory. Phys Chem Earth, Parts A/B/C 32: 616–628. [Google Scholar]
  • Nicollin F, Gibert D, Bossart P, Nussbaum C, Guervilly C. 2008. Seismic tomography of the excavation damaged zone of the gallery 04 in the Mont Terri Rock Laboratory. Geophys J Int 172: 226–239. [CrossRef] [Google Scholar]
  • Nicollin F, Gibert D, Lesparre N, Nussbaum C. 2010. Anisotropy of electrical conductivity of the excavation damaged zone in the Mont Terri Underground Rock Laboratory. Geophys J Int 181: 303–320. [CrossRef] [Google Scholar]
  • Okay G. 2011. Caractérisation des hétérogénéités texturales et hydriques des géomatériaux argileux par la méthode de polarisation provoquée : application à l’EDZ de la station expérimentale de Tournemire. Mémoire de thèse de doctorat, université Pierre-et-Marie-Curie, Paris (France). [Google Scholar]
  • Okay G, Cosenza P, Ghorbani A, et al. 2013. Localization and characterization of cracks in clay-rocks using frequency and time-domain induced polarization. Geophys Prospect 61: 134–152. [CrossRef] [Google Scholar]
  • Okay G, Leroy P, Ghorbani A, et al. 2014. Spectral induced polarization of clay-sand mixtures: experiments and modeling. Geophysics 79: E353–E375. [CrossRef] [Google Scholar]
  • Pettitt WS, Young RP, Balland C, et al. 2004. Development of the tools and interpretation techniques for ultrasonic surveys to monitor the rock barrier around radioactive waste packages in geological repositories. In: OMNIBUS final technical report, FIKW-2001 – 00202, 5th EURA–TOM Framework Program EC, 2004. [Google Scholar]
  • Sarout J, Guéguen Y. 2008. Anisotropy of elastic wave velocities in deformed shales: part 1—Experimental results. Geophysics 73: D75–D79. [CrossRef] [Google Scholar]
  • Schuster K, Alheid HJ, Böddener D. 2001. Seismic investigation of the excavation damaged zone in Opalinus clay. Eng Geol 61: 189–197. [CrossRef] [Google Scholar]
  • Suzuki K, Nakata E, Minami M, et al. 2004. Estimation of the zone of excavation disturbance around tunnels, using resistivity and acoustic tomography. Explor Geophys 35: 62–69. [CrossRef] [Google Scholar]
  • Tsang CF, Bernier F, Davies C. 2005. Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays—in the context of radioactive waste disposal. Int J Rock Mech Min Sci 42: 109–125. [Google Scholar]
  • Valle V, Hedan S, Cosenza P, Fauchille AL, Berdjane M. 2015. Digital image correlation development for the study of materials including multiple crossing cracks. Exp Mech 55: 379–391. [CrossRef] [Google Scholar]
  • Zhou B, Greenhalgh S. 2008. Non-linear travel time inversion for 3-D seismic tomography in strongly anisotropic media. Geophys J Int 172: 383–394. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.