Accès gratuit
Numéro |
Rev. Fr. Geotech.
Numéro 158, 2019
Fondations d'éoliennes offshore
|
|
---|---|---|
Numéro d'article | 4 | |
Nombre de pages | 9 | |
DOI | https://doi.org/10.1051/geotech/2019010 | |
Publié en ligne | 30 août 2019 |
- Abadie C, Byrne B, Houlsby G. 2017. Modelling of monopile response to cyclic lateral loading in sand. Offshore Site Investigation Geotechnics 8th International Conference Proceedings. Society of Underwater Technology, pp. 1046–1053. DOI: 10.3723/OSIG17.1046. [Google Scholar]
- Abadie CN, Byrne BW, Houlsby GT. 2018. Rigid pile response to cyclic lateral loading: Laboratory tests. Géotechnique 1–14. DOI: 10.1680/jgeot.16.p.325. [Google Scholar]
- Abbs AF. 1983. Lateral pile analysis in weak carbonate rocks. Geotechnical Practice in Offshore Engineering, ASCE, Austin, Texas, pp. 546–556. DOI: 10.1139/cgj-2015-0600. [Google Scholar]
- Abchir Z, Burlon S. 2018. Monopile design methodology under axial cyclic loading – User manual of the axial TZC. SOLCYP+ project, WP5, Delivrable 02. [Google Scholar]
- Albiker J, Achmus M, Frick D, Flind F. 2017. 1 g model tests on the displacement accumulation of large-diameter piles under cyclic lateral loading. Geotech Test J 40: 20160102. DOI: 10.1520/GTJ20160102. [CrossRef] [Google Scholar]
- API RP2A–WSD. 2000. Recommended practice for planning, designing, and constructing fixed offshore platforms. API Recommended Practice 2A-WSD, 21st edition, Dallas. [Google Scholar]
- Bayton SM, Black JA. 2016. The effect of soil density on offshore wind turbine monopile. Proc 3rd Eur Conf Phys Model (Eurofuge 2016) 1: 245–251. [Google Scholar]
- Boulon M. A 3-d direct shear device for testing the mechanical behaviour and the hydraulic conductivity of rock joints. In: Proceedings Mechanics of Jointed and Faulted Rock, 1995, pp. 407–413. [Google Scholar]
- BSH. 2007. Standard – Design of offshore wind turbines. Hamburg: Federal Maritime and Hydrographic Agency. [Google Scholar]
- BSH. 2011. Guidance for use of the BSH standard “Design of offshore wind turbines, 2007”. Hamburg: Federal Maritime and Hydrographic Agency. [Google Scholar]
- Burlon S, Mroueh H, Cao J. 2014. “Skipped cycles” method for studying cycling loading and soil-structure interface. Comp Geotech 61: 209–220. DOI: 10.1016/j.compgeo.2014.05.007. [CrossRef] [Google Scholar]
- Byrne B, McAdam R, Burd H, et al. 2015a. New design methods for large diameter piles under lateral loading for offshore wind applications. In: Frontiers in offshore geotechnics III. DOI: 10.1201/b18442-96. [Google Scholar]
- Byrne B, McAdam R, Burd H, et al. 2015b. Field testing of large diameter piles under lateral loading for offshore wind applications. Proceedings of the 16th European Conference on soil Mechanics and Geotechnical Engineering (ECSMGE), Edinburgh, UK. [Google Scholar]
- Danish Geotechnical Society. 2014. Disponible sur https://danskgeotekniskforening.dk/sites/default/files/pdf/pdf2014/Moede%202/Session%203%20-%20Presentation%202%20-%20A%20Muir%20Wood%20-%20DONG%20Energy%20-%20Future%20Monopile%20Design%20-%20DGF%20Seminar%202014-04-01.pdf (dernière consult. 2019/11/06). [Google Scholar]
- DNV-OS-J101. 2014. Design of offshore wind turbine structures. Oslo: DNV Offshore Standards, Det Norske Veritas. [Google Scholar]
- Dyson GJ, Randolph MF. 2001. Monotonic lateral loading of piles in Calcareous sediments. J Geotech Eng Div, ASCE 127(4): 346–352. DOI: 10.1061/(ASCE)1090-0241(2001)127:4(346). [CrossRef] [Google Scholar]
- Erbrich CT. 2004. A new method for the design of laterally loaded anchor piles in soft rock. Proceedings of Offshore Technology Conference in Houston, Texas, USA, 3–6 May 2004. [Google Scholar]
- Fingersh L, Hand M, Laxson A. 2006. Wind turbine design cost and scaling model. Technical report NREL/TP-500-40566. Golden, Colorado: National Renewable Energy Laboratory. [CrossRef] [Google Scholar]
- Fragio AG, Santiago JL, Sutton VJR. 1985. Load tests on Grouted piles in rock. Proceedings Offshore Technology Conference, OTC 4851. [Google Scholar]
- GL. 2005. Rules and Guidelines. IV Industrial Services. Part 2 – Guidelines for the certification of offshore wind turbines. Germanischer Lloyd, Reprint 2007. [Google Scholar]
- Hald T, Morch C, Jensen L, Bakmar CL, Ahle K. 2009. Revisiting monopile design using p-y curves. Results from full-scale measurements on Horms Rev. Proceeding of the European Offshore Wind Conference. [Google Scholar]
- Isorna R, Dano C, Kotronis P, Thorel L, Blanc M, Philippe M. 2015. Projet CHARGEOL : étude expérimentale et numérique des pieux de fondation des éoliennes offshore. 12e Colloque National en calcul des Structures, Giens, France. [Google Scholar]
- Isorna R, Blanc M, Thorel L, Kotronis P, Dano C, Philippe M. 2017. Axial behaviour of jacket piles for offshore wind turbines. Int J Phys Model Geotech 17: 229–245. DOI: 10.1680/jphmg.15.00044. [Google Scholar]
- Kallehave D, LeBlanc C, Liingaard MA. 2012. Modification of the API p-y formulation of initial stiffness of sand. Offshore Site Investigation and Geotechnics: Integrated Technologies – Present and Future, London, UK, pp. 465–472. [Google Scholar]
- Kallehave D, Byrne B, LeBlanc C, Mikkelsen K. 2015. Optimization of monopiles for offshore wind turbine. Philos Trans Royal Societ A 373. DOI: 10.1098/rsta.2014.0100. [Google Scholar]
- Khemakhem M, Chenaf N, Garnier J, Favraud C, Gaudicheau P. 2012. Development of degradation laws for describing the cyclic lateral response of piles in clays. 7th International Conference Offshore Site Investigation and Geotechnics, SUT, London. [Google Scholar]
- Kirkwood P, Haigh S. 2014. Centrifuge testing of monopiles subject to cyclic lateral loading. In: ICPMG2014 – Physical Modelling in Geotechnics. CRC Press, pp. 827–831. DOI: 10.1201/b16200-114. [Google Scholar]
- LeBlanc C, Houlsby GT, Byrne BW. 2010. Response of stiff piles in sand to long-term cyclic lateral loading. Géotechnique 60: 79–90. DOI: 10.1680/geot.7.00196. [CrossRef] [Google Scholar]
- Ministère de la Transition écologique et solidaire. 2019. Disponible sur https://www.ecologique-solidaire.gouv.fr/sites/default/files/Synthèse%20finale%20Projet%20de%20PPE.pdf (dernière consult. 2019/12/06). [Google Scholar]
- Negro V, López-Gutiérrez J-S, Esteban MD, Alberdi P, Imaz M, Serraclara J-M. 2017. Monopiles in offshore wind: Preliminary estimate of main dimensions. Ocean Eng 133: 253–261. DOI: 10.1016/j.oceaneng.2017.02.011. [CrossRef] [Google Scholar]
- Papon A, Yin Z-Y, Riou Y, Hicher P-Y. 2012. Time homogenization for clays subjected to large numbers of cycles. Int J Numer Anal Method Geomech 37(11): pp. 1470–1491. DOI: 10.1002/nag.2092. [CrossRef] [Google Scholar]
- Peralta PK. 2010. Investigations on the behavior of large diameter piles under long-term lateral cyclic loading in cohesionless soil. Degree of Doctor of Engineering, Leibniz University Hannover, 223 p. [Google Scholar]
- Puech A, Garnier J. 2017. Recommandations pour le dimensionnement des pieux sous chargements cycliques. Projet National SOLCYP, Editions ISTE. [Google Scholar]
- Rakotonindriana J. 2009. Comportement des pieux et des groupes de pieux sous chargement latéral cycliques. Thèse ENPC. Disponible sur https://pastel.archives-ouvertes.fr/pastel-00575332/document. [Google Scholar]
- Reese Lymon C. 1997. Analysis of laterally loaded piles in weak rock. J Geotech Environ Eng. DOI: 10.1061/(ASCE)1090-0241(1997)123:11(1010). [Google Scholar]
- Rosquoët F. 2004. Pieux sous chargement latéral cyclique. Thèse de Doctorat, École centrale et Université de Nantes. [Google Scholar]
- Rosquoët F, Thorel L, Garnier J, Chenaf N. 2013. Pieu sous charge latérale dans les sables : développement de lois de dégradation pour prendre en compte l’effet des cycles. Proceedings 18th ICSMGE, Paris. [Google Scholar]
- Tata B, Boulon M, Puech A. 2015. Essais de cisaillement cyclique sur des interfaces calcarénite-coulis. Rapport du Projet National SOLCYP. [Google Scholar]
- Velarde J, Bachynski EE. 2017. Design and fatigue analysis of monopile foundations to support the DTU 10 MW offshore wind turbine. Energy Proc 137: 3–13. DOI: 0.1016/j.egypro.2017.10.330. [CrossRef] [Google Scholar]
- Wichtmann T. 2005. Explicit accumulation model for non-cohesive soils under cyclic loading. In: Triantafyllidis T, ed. Schriftenreihe des Institutes für Grundbau und Bodenmechanik der Ruhr, Universität Bochum, Heft 38. [Google Scholar]
- Yu LQ, Wang LZ, Guo Z, et al. 2015. Long-term dynamic behavior of monopile supported offshore wind turbines in sand. Theor Appl Mech Lett 5: 80–84. DOI: 10.1016/j.taml.2015.02.003. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.