Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 162, 2020
Amélioration et renforcement des sols
Numéro d'article 1
Nombre de pages 27
DOI https://doi.org/10.1051/geotech/2020003
Publié en ligne 26 mars 2020
  • AFNOR. 2004. Qualité environnementale des produits de construction– Déclaration environnementale et sanitaire des produits de construction. [Google Scholar]
  • Almeida MCF, Ehrlich M, Spazzi-Ferreira A, Marques MES. 2007. Embankment supported on piles with biaxial geogrids. Geotech Eng 160(4): 185–193. [CrossRef] [Google Scholar]
  • ASIRI. 2012. Recommandations pour la conception, le calcul, l’exécution et le contrôle des ouvrages sur sols améliorés par inclusions rigides verticales. IREX, Paris : Presses des Ponts. www.asiri.irex.asso.fr. [Google Scholar]
  • Barrias A, Casas JR, Villalba S. 2015. A review of distributed optical fiber sensors for civil engineering applications. Sensors 16(5): 748 [CrossRef] [Google Scholar]
  • Blanc M, Rault G, Thorel L, Almeida M. 2013. Centrifuge investigation of load transfer mechanisms in a granular mattress above a rigid inclusions network. Geotext Geomembr 36: 92–105. [CrossRef] [Google Scholar]
  • Briançon L. 2002. Renforcement des sols par inclusions rigides– État de l’art en France et à l’étranger. IREX, opération du réseau génie civil et urbain. [Google Scholar]
  • Briançon L, Simon B. 2011. Renforcement d’un remblai par inclusions rigides : approche expérimentale. Revue française de géotechnique 137: 3–14. [CrossRef] [EDP Sciences] [Google Scholar]
  • Briançon L, Simon B. 2017. Pile-supported embankment over soft soil for a high-speed line. Geosynth Int 24(3): 293–305. [Google Scholar]
  • Briançon L, Keller V, Bustamante M, et al. 2010. Renforcement d’un cadre béton armé par inclusions rigides. Actes JNGG 2010, 23–24 juin 2010, Grenoble, France, 2: 571–578. [Google Scholar]
  • Briançon L, Simon B, Auray G. 2014. Remblai expérimental sur inclusions rigides. Actes JNGG, 8–10 juillet, Beauvais, France. [Google Scholar]
  • Briançon L, Liausu P, Plumelle C, Simon B. 2017. AMSOL, amélioration et renforcement des sols. Paris : Éditions du Moniteur. [Google Scholar]
  • BS8006-1. 2010. Code of practice for strengthened/reinforced soils and other fills. London: British Standards Institution. [Google Scholar]
  • Burtin P, Racinais J. 2014. Dimensionnement selon les recommandations ASIRI d’inclusions rigides (CMC) sous un remblai de la LGV SEA. Proceedings of GEORAIL 2014 International Symposium, 6–7 novembre 2014, Marne La Vallée, France. [Google Scholar]
  • Burtin P, Racinais J. 2016. Embankment on soft soil reinforced by CMC semi-rigid inclusions for the high-speed railway SEA, Proceedings of ICTG 2016, 4–7 September, Guimarães, Portugal, pp. 355–362. [Google Scholar]
  • Chen RP, Wang YW, Ye XW, Bian XC, Dong XP. 2016. Tensile force of geogrids embedded in pile-supported reinforced embankment: A full-scale experimental study. Geotext Geomembr 44(2): 157–169. [CrossRef] [Google Scholar]
  • Cheng Q, Wu J, Zhang D, Ma F. 2014. Field testing of geosynthetic-reinforced and column-supported earth platforms constructed on soft soil. Front Struc Civil Eng 8(2): 124–139. [CrossRef] [Google Scholar]
  • Chevalier B. 2008. Études expérimentale et numérique des transferts de charge dans les matériaux granulaires. Application au renforcement de sols par inclusions rigides. Grenoble : Université Joseph-Fourier. [Google Scholar]
  • Cuira F, Simon B. 2009. Deux outils simples pour traiter des interactions complexes d’un massif renforcé par inclusions rigides. Proceedings of the 17th International Conference on Soils Mechanics and Geotechnical Engineering, 5–9 October, Alexandria, Egypt, pp. 1163–1166. [Google Scholar]
  • CUR 226. 2016. Design guideline– Basal reinforced piled embankments. Revision of the Design Guideline CUR226. SBRCURnet & CRC press, Delft. [Google Scholar]
  • Duijnen PG van, Eekelen SJM van, Stoel AEC. 2010. Monitoring of a railway piled embankment, Proceedings of 9th ICG, 23–27 May, Guaruja, Brazil, pp. 1461–1464. [Google Scholar]
  • EBGEO. 2010. Empfehlung für den Entwurf und die Berechnung von Erdkörper mit Bewehrungen als Geokunststoffen. In: Bewehrte Erdkörper auf punkt- oder linienförmigen Traggliedern. Deutsche Gesellschaft für Geotechnik e.V., (German Geotechnical Society), Ernst & Sohn, ISBN 978-3-433-02950-3 (Kapitel 9). [Google Scholar]
  • Eekelen SJM van. 2015. Basal reinforced piled embankments. Experiments, field studies and the development and validation of a new analytical design model. PHD dissertation. ISBN 978-94-6203-825-7. [Google Scholar]
  • Eekelen SJM van, Bezuijen A, Alexiew D. 2010. The Kyoto road piled embankment: 3 1/2 years of measurements, Proceedings of 9th ICG, 23–27 May, Guaruja, Brazil, pp. 1941–1944. [Google Scholar]
  • Eekelen SJM van, Bezuijen A, Lodder HJ, Tol AF van. 2012a. Model experiments on piled embankments. Part I. Geotext Geomembr 32: 69–81. [CrossRef] [Google Scholar]
  • Eekelen SJM van, Bezuijen A, Lodder HJ, Tol AF van. 2012b. Model experiments on piled embankments. Part II. Geotext Geomembr 32: 82–94. [CrossRef] [Google Scholar]
  • Eekelen SJM van, Bezuijen A, Tol AF van. 2013. An analytical model for arching in piled embankments. Geotext Geomembr 39: 78–102. [CrossRef] [Google Scholar]
  • Eekelen SJM van, Venmans AAM, Bezuijen A, Tol AF van. 2017. Long-term measurements in the Woerden geosynthetic-reinforced pile-supported embankment. Geosynth Int 1–15. [CrossRef] [Google Scholar]
  • Ferber V, Bourguet R, Ouvry JF, Cibot L, Gautier-Bret Y. 2015. Conception d’un matelas en sols traités renforcé par géosynthétique sur inclusions rigides : Rocade de Bourges. Actes des 10e Rencontres Géosynthétique, 24–26 mars, La Rochelle, France. [Google Scholar]
  • FHWA. 1998. Geosynthetic design and construction guidelines. NHA Course n° 13213, 150 p. [Google Scholar]
  • Garnier J. 2001. Physical models in geotechnics: State of the art and recent advances. First Coulomb Lecture (Caquot Conference, 3 October, Paris), pp. 1–51. [Google Scholar]
  • Halvordson KA, Plaut RH, Filz GM. 2010. Analysis of geosynthetic reinforcement in pile-supported embankments. Part II: 3D cable-net model. Geosynth Int 17: 68–76. [CrossRef] [Google Scholar]
  • Han J, Bhandari A, Wang F. 2012. DEM Analysis of stresses and deformations of geogrid-reinforced embankments over piles. Int J Geomech 12(4): 340–350. [CrossRef] [Google Scholar]
  • Haring W, Profittlich M, Hangen H. 2008. Reconstruction of the national road N210 Bergambacht to Krimpen A.D. Ijssel, N.L: Design approach, construction experiences and measurement results, Proceedings of EuroGeo 4, 07–10 September, Edinburgh, UK, pp. 1–4. [Google Scholar]
  • Hartmann DA, Almeida MCF, Almeida MSS, Blanc M, Thorel L. 2014. On the influence of pretension and number of geosynthetic layers on piled embankment performance, Proceedings of 10th ICG, 21–25 September, Berlin, Germany. [Google Scholar]
  • Heitz C, Kempfert HG. 2007. Geosynthetic-reinforced and pile-supported earth structures under static and cyclic loading. Bauingenieur 82: 380–387. [Google Scholar]
  • Hewlett W, Randolph MA. 1988. Analysis of piled embankments. Gr Eng 21: 12–18. [Google Scholar]
  • Jones B, Plaut RH, Filz GM. 2010. Analysis of geosynthetic reinforcement in pile-supported embankments. Part I: 3D plate model. Geosynth Int 17: 59–67. [CrossRef] [Google Scholar]
  • King DJ, Bouazza A, Gniel JR, Rowe RK, Bui HH. 2017. Load-transfer platform behaviour in embankments supported on semi-rigid columns: implications of the ground reaction curve. Can Geotech J 54(8): 1158–1175. [CrossRef] [Google Scholar]
  • Lanticq V. 2009. Mesure répartie de température et de déformations par diffusion Brillouin : de la fibre optique au capteur pour le génie civil. Thèse de doctorat de l’ Ecole Nationale Supérieure des Télécommunications, 169 p. [Google Scholar]
  • Lian F, Zhi L, Gu J, Li Q, Hu X, Wu H. 2014. Field study of improvement mechanism of geogrid-reinforced and pile-supported embankment. Appl Mech Mater 587-589: 928–933. [CrossRef] [Google Scholar]
  • Liu HL, Ng CW, Fei K. 2007. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: Case study. J Geotechn Geoenviron Eng 133: 1483–1493. [CrossRef] [Google Scholar]
  • Lu W, Miao L. 2015. A simplified 2-D evaluation method of the arching effect for geosynthetic-reinforced and pile-supported embankments. Comput Geotech 65: 97–103. [CrossRef] [Google Scholar]
  • Mroueh UM, Eskola P, Laine-Ylijoki J. 2001. Life-cycle impacts of the use of industrial by-products in road and earth construction. Waste Manag 21: 271–277. [CrossRef] [Google Scholar]
  • Nunez MA, Briançon L, Dias D. 2013. Analyses of a pile-supported embankment over soft clay: Full-scale experiment, analytical and numerical approaches. Eng Geol 153: 53–67. [CrossRef] [Google Scholar]
  • Oh YI, Shin EC. 2007. Reinforcement and arching effect of geogrid-reinforced and pile-supported embankment on marine soft ground. Mar Geores Geotechnol 25(2): 97–118. [CrossRef] [Google Scholar]
  • Okyay U. 2010. Étude expérimentale et numérique des transferts de charge dans un massif renforcé par inclusions rigides. Applications à des cas de chargements statiques et dynamiques. Thèse de doctorat, INSA, Lyon. [Google Scholar]
  • Okyay U, Dias D, Thorel L, Rault G. 2014. Centrifuge modelling of a Pile-Supported Granular Earth-platform. J Geotech Geoenviron Eng 140–2. [Google Scholar]
  • Plaut RH, Filz GM. 2010. Analysis of geosynthetic reinforcement in pile supported embankments. Part III: Axisymmetric model. Geosynth Int 17: 77–85. [CrossRef] [Google Scholar]
  • Plaxis. 2018. Plaxis 2D Reference manual, pp. 83–84. [Google Scholar]
  • Racinais J. 2011. Remblai sur inclusions rigides LGV EST– Lot 34B. Journée du CFMS, 4 octobre, 18 p. [Google Scholar]
  • Rault G, Thorel L, Néel A, et al. 2010. Mobile tray for simulation of 3D load transfer in pile-supported earth platforms. Proceeding of 7th international Conference on Physical Modelling in Geotechnics, 28 June–1 July, Zurich, Switzerland, pp. 261–266. [Google Scholar]
  • Schlosser F, Long NT. 1972. Comportement de la Terre Armée dans les ouvrages de soutènement. Compte-rendus du 5e Congrès Européen de Mécanique des Sols et des Travaux de Fondations 1, Madrid, Spain, pp. 299–306. [Google Scholar]
  • Simon B. 2015. Prise en compte des géogrilles dans un modèle biphasique simplifié d’un sol renforcé par inclusions rigides. Proceedings of 16th European Conference on Soil Mechanics and Geotechnical Engineering, Edinburgh, UK, pp. 1475–1480. [Google Scholar]
  • Sloan JA, Filz G, Collin J. 2013. Column-supported embankments: Full-scale test and design recommendations (Report). Blacksburg: Virginia Tech. [Google Scholar]
  • Smith ME, Filz GM. 2007. Axisymmetric numerical modeling of a unit cell in geosynthetic-reinforced column-supported embankments. Geosynth Int 14:13–22. [CrossRef] [Google Scholar]
  • Tran VDH, Meguid MA, Chouinard LE. 2013. A finite-discrete element framework for the 3D modeling of geogrid-soil interaction under pull-out loading conditions. Geotext Geomembr 37: 1–9. [CrossRef] [Google Scholar]
  • Villard P, Chevalier B, Le Hello B, Combe G. 2009. Coupling between finite and discrete element methods for the modelling of earth structures reinforced by geosynthetic. Comput Geotechn 36(5): 709–717. [CrossRef] [Google Scholar]
  • Villard P, Huckert A, Briançon L. 2016. Load transfer mechanisms in geotextile-reinforced embankments overlying voids: Numerical approach and design. Geotext Geomembr 44(3): 381–395. [CrossRef] [Google Scholar]
  • Wachman G, Biolzi L, Labuz J. 2010. Structural behavior of a pile-supported embankment. J Geotech Geoenviron Eng 136: 26–34. [CrossRef] [Google Scholar]
  • Xing H, Zhang Z, Liu H, Wei H. 2014. Large-scale tests of pile-supported earth platform with and without geogrid. Geotext Geomembr 42: 586–598. [CrossRef] [Google Scholar]
  • Yin F, Zhou H, Chu J. 2017. Experimental and numerical analysis of XCC pile-geogrid foundation for existing expressway under traffic load. Int J Civil Eng 16(5): 2–19. [Google Scholar]
  • Zhai W, Wei K, Song X, Shao M. 2015. Experimental investigation into ground vibrations induced by very high-speed trains on a non-ballasted track. Soil Dyn Earthq Eng 72: 24–36. [Google Scholar]
  • Zhuang Y, Cui X. 2016. Case studies of reinforced piled high-speed railway embankment over soft soils. Int J Geomech 16(2). [Google Scholar]
  • Zhuang Y, Ellis E. 2014. Finite-element analysis of a piled embankment with reinforcement compared with BS 8006 predictions. Geotechnique 64: 910–917. [CrossRef] [Google Scholar]
  • Zhuang Y, Wang K. 2018. Finite element analysis on the dynamic behavior of soil arching effect in piled embankment. Transp Geotech 14: 8–21. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.