Accès gratuit
Numéro |
Rev. Fr. Geotech.
Numéro 163, 2020
Chutes de bloc, Risques Rocheux et Ouvrages de Protection (C2ROP)
|
|
---|---|---|
Numéro d'article | 5 | |
Nombre de pages | 12 | |
DOI | https://doi.org/10.1051/geotech/2020014 | |
Publié en ligne | 2 octobre 2020 |
- Alestalo J. 1971. Dendrochronological interpretation of geomorphic processes. Fennia Int J Geogr 105(1). Available from https://fennia.journal.fi/article/view/40757. [Google Scholar]
- Astrade L, Stoffel M, Corona C, Lopez Saez J. 2012. L’utilisation des cernes de croissance des arbres pour l’étude des événements et des changements morphologiques : intérêts, méthodes et apports des recherches alpines à la dendrogéomorphologie. Geomorphol Relief Process Environ: 295–316. Available from https://hal.archives-ouvertes.fr/halsde-00751468. [CrossRef] [Google Scholar]
- Corona C, Saez JL, Stoffel M, Rovéra G, Edouard JL, Berger F. 2012. Seven centuries of avalanche activity at Echalp (Queyras massif, southern French Alps) as inferred from tree rings. The Holocene 23: 292–304. https://doi.org/10.1177/0959683612460784. Available from http://journals.sagepub.com/doi/10.1177/0959683612460784. [CrossRef] [Google Scholar]
- D’Amato J, Hantz D, Guerin A, Jaboyedoff M, Baillet L, Mariscal A. 2016. Influence of meteorological factors on rockfall occurrence in a middle mountain limestone cliff. Nat Hazards Earth Syst Sci 16: 719–735. https://doi.org/10.5194/nhess-16-719-2016. Available from https://www.nat-hazards-earth-syst-sci.net/16/719/2016/. [CrossRef] [Google Scholar]
- Deline P. 2009. Interactions between rock avalanches and glaciers in the Mont Blanc massif during the late Holocene. Quat Sci Rev 28: 1070–1083. https://doi.org/10.1016/j.quascirev.2008.09.025. Available from https://linkinghub.elsevier.com/retrieve/pii/S027737910800293X. [CrossRef] [Google Scholar]
- Delonca A, Gunzburger Y, Verdel T. 2014. Statistical correlation between meteorological and rockfall databases. Nat Hazards Earth Syst Sci 14: 1953–1964. https://doi.org/10.5194/nhess-14-1953-2014. Available from https://www.nat-hazards-earth-syst-sci.net/14/1953/2014/. [CrossRef] [Google Scholar]
- Dorren L, Berger F, Jonsson M, et al. 2007. State of the art in rockfall − forest interactions. Schweiz Z Forstwes 158: 128–141. https://doi.org/10.3188/szf.2007.0128. Available from http://szf-jfs.org/doi/abs/10.3188/szf.2007.0128. [CrossRef] [Google Scholar]
- Durand Y, Giraud G, Laternser M, Etchevers P, Mérindol L, Lesaffre B. 2009a. Reanalysis of 47 years of climate in the French Alps (1958–2005): climatology and trends for snow cover. J Appl Meteorol Climatol 48: 2487–2512. https://doi.org/10.1175/2009JAMC1810.1. Available from http://journals.ametsoc.org/doi/abs/10.1175/2009JAMC1810.1. [Google Scholar]
- Durand Y, Laternser M, Giraud G, Etchevers P, Lesaffre B, Mérindol L. 2009b. Reanalysis of 44 yr of climate in the French Alps (1958–2002): methodology, model validation, climatology, and trends for air temperature and precipitation. J Appl Meteorol Climatol 48: 429–449. https://doi.org/10.1175/2008JAMC1808.1. Available from http://journals.ametsoc.org/doi/abs/10.1175/2008JAMC1808.1. [CrossRef] [Google Scholar]
- Dussauge-Peisser C. 2002. Évaluation de l’aléa éboulement rocheux : développements méthodologiques et approches expérimentales ; application aux falaises calcaires du Y grenoblois. Grenoble 1. Available from http://www.theses.fr/2002GRE10052. [Google Scholar]
- Eckert N, Deschatres M, Bélanger L. 2010. Analyse des fluctuations spatio-temporelles des nombres d’avalanches dans les Alpes du Nord à partir de l’enquête permanente sur les avalanches (EPA). Irstea. https://doi.org/10.14758/SET-REVUE.2010.2.03. Available from http://www.set-revue.fr/sites/default/files/articles/pdf/SET_02_article_02_0.pdf. [Google Scholar]
- Efthymiadis D, Jones PD, Briffa KR, et al. 2006. Construction of a 10-min-gridded precipitation data set for the Greater Alpine Region for 1800–2003. J Geophys Res 111: D01105. https://doi.org/10.1029/2005JD006120. Available from http://doi.wiley.com/10.1029/2005JD006120. [CrossRef] [Google Scholar]
- Erismann TH, Abele G. 2001. Dynamics of rockslides and rockfalls. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04639-5. Available from http://link.springer.com/10.1007/978-3-662-04639-5. [CrossRef] [Google Scholar]
- Favillier A, Mainieri R, Saez JL, Berger F, Stoffel M, Corona C. 2017. Dendrogeomorphic assessment of rockfall recurrence intervals at Saint Paul de Varces, Western French Alps. Geomorphol Relief Process Environ 23. https://doi.org/10.4000/geomorphologie.11681. Available from http://journals.openedition.org/geomorphologie/11681. [Google Scholar]
- Francou B. 1987. L’éboulisation en haute montagne : six contributions à l’étude du système corniche-éboulis en milieu périglaciaire. Thèse de doctorat. Paris 7. Available from http://theses.fr/1987PA070131. [Google Scholar]
- Frayssines M, Hantz D. 2006. Failure mechanisms and triggering factors in calcareous cliffs of the Subalpine Ranges (French Alps). Eng Geol 86: 256–270. https://doi.org/10.1016/j.enggeo.2006.05.009. Available from https://linkinghub.elsevier.com/retrieve/pii/S0013795206001700. [CrossRef] [Google Scholar]
- Gardner J. 1970. Rockfall: a geomorphic process in high mountain terrain. Alta Geogr 6: 15–20. [Google Scholar]
- Gsteiger P. 1989. Steinschlag, Wald, Relief: empirische Grundlagen zur Steinschlagmodellierung. Google-Books-ID: 3cgESwAACAAJ. [Google Scholar]
- Gsteiger P. 1993. Steinschlagschutzwald. Ein Beitrag zur Abgrenzung, Beurteilung und Bewirtschaftung. Schweiz Z Forstwes 144: 115–132. [Google Scholar]
- Hantz D, Vengeon JM, Dussauge-Peisser C. 2003. An historical, geomechanical and probabilistic approach to rock-fall hazard assessment. Nat Hazards Earth Syst Sci 3: 693–701. https://doi.org/10.5194/nhess-3-693-2003. Available from http://www.nat-hazards-earth-syst-sci.net/3/693/2003/. [CrossRef] [Google Scholar]
- Ibsen ML, Brunsden D. 1996. The nature, use and problems of historical archives for the temporal occurrence of landslides, with specific reference to the south coast of Britain, Ventnor, Isle of Wight. Geomorphology 15: 241–258. https://doi.org/10.1016/0169-555X(95)00073-E. Available from http://www.sciencedirect.com/science/article/pii/0169555x9500073E. [CrossRef] [Google Scholar]
- Šilhán K, Brázdil R, Pánek T, et al. 2011. Evaluation of meteorological controls of reconstructed rockfall activity in the Czech Flysch Carpathians: evaluation of meteorological controls of rockfall activity. Earth Surf Process Landf 36: 1898–1909. https://doi.org/10.1002/esp.2211. Available from http://doi.wiley.com/10.1002/esp.2211. [CrossRef] [Google Scholar]
- Šilhán K, Pánek T, Hradecký J. 2013. Implications of spatial distribution of rockfall reconstructed by dendrogeomorphological methods. Nat Hazards Earth Syst Sci 13: 1817–1826. https://doi.org/10.5194/nhess-13-1817-2013. Available from https://www.nat-hazards-earth-syst-sci.net/13/1817/2013/. [CrossRef] [Google Scholar]
- Šilhán K, Stoffel M. 2015. Impacts of age-dependent tree sensitivity and dating approaches on dendrogeomorphic time series of landslides. Geomorphology 236: 34–43. https://doi.org/10.1016/j.geomorph.2015.02.003. Available from https://linkinghub.elsevier.com/retrieve/pii/S0169555x1500077X. [CrossRef] [Google Scholar]
- Jomelli V, Pavlova I, Eckert N, Grancher D, Brunstein D. 2015. A new hierarchical Bayesian approach to analyse environmental and climatic influences on debris flow occurrence. Geomorphology 250: 407–421. https://doi.org/10.1016/j.geomorph.2015.05.022. Available from https://linkinghub.elsevier.com/retrieve/pii/S0169555x15300064. [CrossRef] [Google Scholar]
- Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP. 2012. Hemispheric and large-scale land-surface air temperature variations: an extensive revision and an update to 2010: land-surface temperature variations. J Geophys Res Atmos 117. https://doi.org/10.1029/2011JD017139. Available from http://doi.wiley.com/10.1029/2011JD017139. [Google Scholar]
- Krautblatter M, Moser M. 2009. A nonlinear model coupling rockfall and rainfall intensity based on a four year measurement in a high Alpine rock wall (Reintal, German Alps). Nat Hazards Earth Syst Sci 9: 1425–1432. https://doi.org/10.5194/nhess-9-1425-2009. Available from https://www.nat-hazards-earth-syst-sci.net/9/1425/2009/. [CrossRef] [Google Scholar]
- Larson PR. 1994. The vascular cambium: development and structure. Springer Science & Business Media. Google-Books-ID: 7mLwCAAAQBAJ. [CrossRef] [Google Scholar]
- Lautridou JP, Letavernier G, Ozouf JC. 1985. Progrès récents dans la connaissance de la gélifraction des roches calcaires. Manchester: T. Spencer. [Google Scholar]
- Lavigne A, Eckert N, Bel L, Parent E. 2015. Adding expert contributions to the spatiotemporal modelling of avalanche activity under different climatic influences. J R Stat Soc C Appl Stat 64: 651–671. https://doi.org/10.1111/rssc.12095. Available from http://doi.wiley.com/10.1111/rssc.12095. [CrossRef] [Google Scholar]
- Lopez-Saez J. 2011. Reconstruction de l’activité des glissements de terrain au moyen d’une approche dendrogéomorphologique (Moyenne vallée de l’Ubaye, Alpes de Haute Provence). Available from https://tel.archives-ouvertes.fr/tel-00716338. [Google Scholar]
- Mainieri R. 2020. La forêt : un intégrateur robuste de l’évolution de la dynamique des chutes de blocs dans un contexte de changements environnementaux ? Ph.D. thesis. Université Grenoble Alpes. Available from http://www.theses.fr/s162573. [Google Scholar]
- Mainieri R, Corona C, Chartoire J, et al. 2020. Dating of rockfall damage in trees yields insights into meteorological triggers of process activity in the French Alps. Earth Surf Process Landf esp.4876. https://doi.org/10.1002/esp.4876. Available from https://onlinelibrary.wiley.com/doi/abs/10.1002/esp.4876. [Google Scholar]
- Mainieri R, Lopez-Saez J, Corona C, Stoffel M, Bourrier F, Eckert N. 2019a. Assessment of the recurrence intervals of rockfall through dendrogeomorphology and counting scar approach: a comparative study in a mixed forest stand from the Vercors massif (French Alps). Geomorphology 340: 160–171. https://doi.org/10.1016/j.geomorph.2019.05.005. Available from https://linkinghub.elsevier.com/retrieve/pii/S0169555x19302016. [CrossRef] [Google Scholar]
- Mainieri R, Lopez-Saez J, Corona C, et al. 2019b. L’inventaire forestier comme méthode de caractérisation spatiale de l’aléa chute de pierres. Schweiz Z Forstwes 170: 78–85. https://doi.org/10.3188/szf.2019.0078. Available from http://szf-jfs.org/doi/10.3188/szf.2019.0078. [CrossRef] [Google Scholar]
- Matsuoka N. 2019. A multi-method monitoring of timing, magnitude and origin of rockfall activity in the Japanese Alps. Geomorphology 336: 65–76. https://doi.org/10.1016/j.geomorph.2019.03.023. Available from https://linkinghub.elsevier.com/retrieve/pii/S0169555x19301230. [CrossRef] [Google Scholar]
- Matsuoka N, Sakai H. 1999. Rockfall activity from an alpine cliff during thawing periods. Geomorphology 28: 309–328. https://doi.org/10.1016/S0169-555X(98)00116-0. Available from http://linkinghub.elsevier.com/retrieve/pii/S0169555x98001160. [CrossRef] [Google Scholar]
- Morel P, Trappmann D, Corona C, Stoffel M. 2015. Defining sample size and sampling strategy for dendrogeomorphic rockfall reconstructions. Geomorphology 236: 79–89. https://doi.org/10.1016/j.geomorph.2015.02.017. Available from https://linkinghub.elsevier.com/retrieve/pii/S0169555x15001002. [CrossRef] [Google Scholar]
- Moya J, Corominas J, Pérez Arcas J, Baeza C. 2010. Tree-ring based assessment of rockfall frequency on talus slopes at Solá d’Andorra, Eastern Pyrenees. Geomorphology 118: 393–408. https://doi.org/10.1016/j.geomorph.2010.02.007. Available from https://linkinghub.elsevier.com/retrieve/pii/S0169555x10000620. [CrossRef] [Google Scholar]
- Muller R, Rohde R, Jacobsen R, Muller E, Wickham C. 2013. A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinf Geostat Overv 01. https://doi.org/10.4172/2327-4581.1000101. Available from http://www.scitechnol.com/2327-4581/2327-4581-1-101.php. [Google Scholar]
- Perret S, Stoffel M, Kienholz H. 2006. Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps − A dendrogeomorphological case study. Geomorphology 74: 219–231. https://doi.org/10.1016/j.geomorph.2005.08.009. Available from https://linkinghub.elsevier.com/retrieve/pii/S0169555x05002710. [CrossRef] [Google Scholar]
- Ravanel L, Allignol F, Deline P, Gruber S, Ravello M. 2010. Rock falls in the Mont Blanc Massif in 2007 and 2008. Landslides 7: 493–501. https://doi.org/10.1007/s10346-010-0206-z. Available from http://link.springer.com/10.1007/s10346-010-0206-z. [CrossRef] [Google Scholar]
- Ravanel L, Deline P. 2011. Climate influence on rockfalls in High-Alpine steep rockwalls: the north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the ‘Little Ice Age’. The Holocene 21: 357–365. https://doi.org/10.1177/0959683610374887. Available from http://journals.sagepub.com/doi/10.1177/0959683610374887. [CrossRef] [Google Scholar]
- Ravanel L, Deline P, Lambiel C, Vincent C. 2013. Instability of a high alpine rock ridge: the lower arête des cosmiques, Mont Blanc massif, France. Geogr Ann Ser A Phys Geogr 95: 51–66. Available from https://doi.org/10.1111/geoa.12000. [CrossRef] [Google Scholar]
- Rovéra G. 1990. Géomorphologie dynamique et aménagement des versants en Moyenne Tarentaise (Savoie, communes de Gravier, Aime, Mâcot-La Plagne et Champagny). Une contribution à l’étude de l’érosion naturelle et anthropique des Alpes. Thèse d’État. France: Université Joseph Fourier Grenoble 1. [Google Scholar]
- Sachs T. 1991. Pattern formation in plant tissues. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511574535. Available from http://ebooks.cambridge.org/ref/id/CBO9780511574535. [CrossRef] [Google Scholar]
- Sass O, Oberlechner M. 2012. Is climate change causing increased rockfall frequency in Austria? Nat Hazards Earth Syst Sci 12: 3209–3216. https://doi.org/10.5194/nhess-12-3209-2012. Available from https://www.nat-hazards-earth-syst-sci.net/12/3209/2012/. [CrossRef] [Google Scholar]
- Schneuwly D, Stoffel M. 2008a. Spatial analysis of rockfall activity, bounce heights and geomorphic changes over the last 50 years − A case study using dendrogeomorphology. Geomorphology 102: 522–531. https://doi.org/10.1016/j.geomorph.2008.05.043. Available from https://linkinghub.elsevier.com/retrieve/pii/S0169555x08002535. [CrossRef] [Google Scholar]
- Schneuwly DM, Stoffel M. 2008b. Tree-ring based reconstruction of the seasonal timing, major events and origin of rockfall on a case-study slope in the Swiss Alps. Nat Hazards Earth Syst Sci 8. https://doi.org/10.5194/nhess-8-203-2008. [CrossRef] [Google Scholar]
- Schweingruber FH. 1996. Tree rings and environment: dendroecology. In: Tree rings and environment: dendroecology. Available from https://www.cabdirect.org/cabdirect/abstract/19980602476. [Google Scholar]
- Stahle DW, Fye FK, Therrell MD. 2003. Interannual to decadal climate and streamflow variability estimated from tree rings. In: Developments in quaternary sciences. Volume 1. Elsevier, pp. 491–504. https://doi.org/10.1016/S1571-0866(03)01023-6. Available from https://linkinghub.elsevier.com/retrieve/pii/S1571086603010236. [CrossRef] [Google Scholar]
- Stoffel M. 2005. Assessing the vertical distribution and visibility of rockfall scars in trees (reviewed paper). Schweiz Z Forstwes 156: 195–199. https://doi.org/10.3188/szf.2005.0195. Available from http://szf-jfs.org/doi/abs/10.3188/szf.2005.0195. [CrossRef] [Google Scholar]
- Stoffel M, Corona C. 2014. Dendroecological dating of geomorphic disturbance in trees. Tree-Ring Res 70: 3–20. https://doi.org/10.3959/1536-1098-70.1.3. Available from http://www.bioone.org/doi/abs/10.3959/1536-1098-70.1.3. [CrossRef] [Google Scholar]
- Stoffel M, Lièvre I, Monbaron M, Perret S. 2005a. Seasonal timing of rockfall activity on a forested slope at Täschgufer (Swiss Alps) − a dendrochronological approach. Z Geomorphol 49. [Google Scholar]
- Stoffel M, Schneuwly D, Bollschweiler M, et al. 2005b. Analyzing rockfall activity (1600–2002) in a protection forest − a case study using dendrogeomorphology. Geomorphology 68: 224–241. https://doi.org/10.1016/j.geomorph.2004.11.017. Available from https://linkinghub.elsevier.com/retrieve/pii/S0169555x04003125. [CrossRef] [Google Scholar]
- Stoffel M, Perret S. 2006. Reconstructing past rockfall activity with tree rings: some methodological considerations. Dendrochronologia 24: 1–15. https://doi.org/10.1016/j.dendro.2006.04.001. Available from https://linkinghub.elsevier.com/retrieve/pii/S1125786506000178. [CrossRef] [Google Scholar]
- Stoffel M, Wehrli A, Kühne R, Dorren LK, Perret S, Kienholz H. 2006. Assessing the protective effect of mountain forests against rockfall using a 3D simulation model. For Ecol Manag 225: 113–122. https://doi.org/10.1016/j.foreco.2005.12.030. Available from https://linkinghub.elsevier.com/retrieve/pii/S0378112705007747. [CrossRef] [Google Scholar]
- Trappmann D, Corona C, Stoffel M. 2013. Rolling stones and tree rings: a state of research on dendrogeomorphic reconstructions of rockfall. Prog Phys Geogr 37: 701–716. https://doi.org/10.1177/0309133313506451. Available from http://journals.sagepub.com/doi/10.1177/0309133313506451. [CrossRef] [Google Scholar]
- Trappmann D, Stoffel M. 2015. Visual dating of rockfall scars in Larix decidua trees. Geomorphology 245: 62–72. https://doi.org/10.1016/j.geomorph.2015.04.030. Available from https://linkinghub.elsevier.com/retrieve/pii/S0169555x15002500. [CrossRef] [Google Scholar]
- Trappmann D, Stoffel M, Corona C. 2014. Achieving a more realistic assessment of rockfall hazards by coupling three-dimensional process models and field-based tree-ring data: assessment of rockfalls by coupling rockfall models and tree-ring data. Earth Surf Process Landf 39: 1866–1875. https://doi.org/10.1002/esp.3580. Available from http://doi.wiley.com/10.1002/esp.3580. [CrossRef] [Google Scholar]
- Weber S, Beutel J, Forno RD, et al. 2019. A decade of detailed observations (2008–2018) in steep bedrock permafrost at the Matterhorn Hörnligrat (Zermatt, CH). Earth Syst Sci Data 11: 1203–1237. Available from https://doi.org/10.5194/essd-11-1203-2019, https://www.earth-syst-sci-data.net/11/1203/2019/. [CrossRef] [Google Scholar]
- Zielonka A, Wrońska-Wałach D. 2019. Can we distinguish meteorological conditions associated with rockfall activity using dendrochronological analysis? − An example from the Tatra Mountains (Southern Poland). Sci Total Environ 662: 422–433. https://doi.org/10.1016/j.scitotenv.2019.01.243. Available from http://www.sciencedirect.com/science/article/pii/S0048969719302980. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.