Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 164, 2020
Numéro d'article 4
Nombre de pages 14
DOI https://doi.org/10.1051/geotech/2021001
Publié en ligne 17 février 2021
  • Abuel-Naga HM, Bergado DT, Bouazza A, Pender M. 2009. Thermomechanical model for saturated clays. Géotechnique 59(3): 273–278. [CrossRef] [Google Scholar]
  • Amatya BL, Soga K, Bourne-Webb PJ, Amis T, Laloui L. 2012. Thermo-mechanical behaviour of energy piles. Géotechnique 62(6): 503–519. [CrossRef] [Google Scholar]
  • Angelotti A, Sterpi D. 2018. On the performance of energy walls by monitoring assessment and numerical modelling: a case in Italy. Environ Geotech 1–8. [Google Scholar]
  • Aquassys. 2015. Station Jules Ferry. Plans generaux geothermie parider et piedroits. [Google Scholar]
  • Baldi G, Huecke T, Pellegrini R. 1988. Thermal volume changes of the mineral-water system in low porosity clay soils. Can Geotech J 25(4): 807–825. [CrossRef] [Google Scholar]
  • Barla M, Di Donna A. 2018. Energy tunnels: concept and design aspects. Undergr Space 3(4): 268–276. [CrossRef] [Google Scholar]
  • Barla M, Di Donna A, Insana A. 2019. A novel real-scale experimental prototype of energy tunnel. Tunnel Undergr Space Technol 87: 1–14. [CrossRef] [Google Scholar]
  • Batini N, Rotta Loria AF, Conti P, Testi D, Grassi W, Laloui L. 2015. Energy and geotechnical behaviour of energy piles for different design solutions. Appl Therm Eng 86: 199–213. [CrossRef] [Google Scholar]
  • Bourne-Webb PJ. 2013. Observed behaviour of energy geostructures. In: Laloui L, Di Donna A, eds. Energy Geostructures: Innovation in Underground Engineering. ISTE Ltd and John Wiley & Sons Inc. [Google Scholar]
  • Campanella RG, Mitchell JK. 1968. Influence of temperature variations on soil behavior. J Soil Mech Found Div, ASCE 94(3): 709–734. [CrossRef] [Google Scholar]
  • Casarella A, Pedrotti M, Tarantino A, Di Donna A. 2020a. A critical review of the effect of temperature on clay inter-particle forces and its effect on macroscopic thermal behaviour of clay. In IACMAG 2021, Torino. [Google Scholar]
  • Casarella A, Tarantino A, Di Donna A. 2020b. Micromechanical interpretation of thermo-plastic behaviour of clays. In: 2nd International Conference on Energy Geotechnics, March 28–31, 2021, La Jolla, California, USA. [Google Scholar]
  • Cecinato F, Loveridge FA. 2015. Influences on the thermal efficiency of energy piles. Energy 82: 1021–1033. [CrossRef] [Google Scholar]
  • Cekerevac C, Laloui L. 2004. Experimental study of thermal effects on the mechanical behaviour of a clay. Int J Num Anal Methods Geomech 28(3): 209–228. [Google Scholar]
  • CFMS, Syntec Ingenierie and Soffons – FNTP. 2016. Recommandations pour la conception, le dimensionnement et la mise en œuvre des géostructures thermiques. Revue Française de Géotechnique 149. [Google Scholar]
  • COMSOL Multiphysics® v5.5. 2020. Stockholm, Sweden, www.comsol.com. [Google Scholar]
  • Cousin B, Rotta Loria AF, Bourget A, Rognon F, Laloui L. 2019. Energy performance and economic feasibility of energy segmental linings for subway tunnels. Tunnel Undergr Space Technol 91(May): 102997. Elsevier. [CrossRef] [Google Scholar]
  • Del Olmo C, Fioravante V, Gera F, Hueckel T, Mayor JC, Pellegrini R. 1996. Thermomechanical properties of deep argillaceous formations. Engineering Geology, 33: 87–101. https://doi.org/10.1016/0148-9062(96)81804-3. [CrossRef] [Google Scholar]
  • Delerablee Y, Burlon S, Reiffsteck P. 2019. Long-term assessment of thermal sustainability of thermoactive geostructures. Environ Geotech 1–17. [Google Scholar]
  • Di Donna A, Barla M. 2016. The role of ground conditions on energy tunnels’ heat exchange. Environ Geotech 3(4): 214–224. [CrossRef] [Google Scholar]
  • Di Donna A, Laloui L. 2014. Numerical analysis of the geotechnical behaviour of energy piles. Int J Numer Anal Methods Geomech 39: 861–888. [CrossRef] [Google Scholar]
  • Di Donna A, Laloui L. 2015. Response of soil subjected to thermal cyclic loading: Experimental and constitutive study. Eng Geol 190: 65–76. [CrossRef] [Google Scholar]
  • Di Donna A, Cecinato F, Loveridge F, Barla M. 2016a. Energy performance of diaphragm walls used as heat exchangers. Proc Inst Civil Eng − Geotech Eng 170(3): 1–14. [Google Scholar]
  • Di Donna A, Ferrari A, Laloui L. 2016b. Experimental investigations of the soil − concrete interface: physical mechanisms, cyclic mobilization, and behaviour at different temperatures. Can Geotech J 53(2015): 1–14. [CrossRef] [Google Scholar]
  • Di Donna A, Rotta Loria AF, Laloui L. 2016c. Numerical study of the response of a group of energy piles under different combinations of thermo-mechanical loads. Comput Geotech 72: 126–142. Elsevier Ltd. [CrossRef] [Google Scholar]
  • Di Donna A, Barla M, Amis T. 2017. Energy Geostructures: Analysis from research and systems installed around the World. In: DFI 42th Annual Conference on Deep Foundations, New Orleans, USA. [Google Scholar]
  • Di Donna A, Loveridge F, Piemontese M, Barla M. 2021. The role of ground conditions on the heat exchange potential of energy walls. Geomech Energy Environ 25. [Google Scholar]
  • Franzius JN, Pralle N. 2011. Turning segmental tunnels into sources of renewable energy. Proc Inst Civil Eng − Civil Eng 164(1): 35–40. [CrossRef] [Google Scholar]
  • Gao J, Zhang X, Liu J, Li K, Yang J. 2008. Numerical and experimental assessment of thermal performance of vertical energy piles: An application. Appl Energy 85(10): 901–910. [CrossRef] [Google Scholar]
  • Hueckel T, Baldi G. 1990. Thermoplasticity of saturated clays: experimental and constitutive study. J Geotech Eng 116(12): 1778–1796. [CrossRef] [Google Scholar]
  • Insana A, Barla M. 2020. Experimental and numerical investigations on the energy performance of a thermo-active tunnel. Renew Energy 152: 781–792. Elsevier Ltd. [CrossRef] [Google Scholar]
  • Laloui L, Di Donna A. 2013. Energy geostructures: innovation in underground engineering. ISTE Ltd and John Wiley & sons Inc. [CrossRef] [Google Scholar]
  • Laloui L, François B. 2009. ACMEG-T: Soil Thermoplasticity Model. (May 2010): 932–944. [Google Scholar]
  • Laloui L, Rotta Loria AF. 2019. Analysis and Design of Energy Geostructures. Edited By Elsevier. [Google Scholar]
  • Loveridge F, Powrie W. 2013. Pile heat exchangers: Thermal behaviour and interactions. Proc Inst Civil Eng: Geotech Eng 166(2): 178–196. [CrossRef] [Google Scholar]
  • Loveridge F, McCartney JS, Narsilio GA, Sanchez M. 2020. Energy geostructures: A review of analysis approaches, in situ testing and model scale experiments. Geomech Energy Environ 100173. Elsevier Ltd. [CrossRef] [Google Scholar]
  • Maghsoodi S, Cuisinier O, Masrouri F. 2020. Thermal effects on mechanical behaviour of soil-structure interface. Can Geotech J 57(1): 32–47. [CrossRef] [Google Scholar]
  • Peltier M, Rotta Loria AF, Lepage L, Garin E, Laloui L. 2019. Numerical investigation of the convection heat transfer driven by airflows in underground tunnels. Appl Therm Eng 159(May): 113844. Elsevier. [CrossRef] [Google Scholar]
  • Rammal D, Mroueh H, Burlon S. 2018. Thermal behaviour of geothermal diaphragm walls: Evaluation of exchanged thermal power. Renew Energy 147: 2643–2653. Elsevier Ltd. [CrossRef] [Google Scholar]
  • Rotta Loria AF, Laloui L. 2017. Thermally induced group effects among energy piles. Géotechnique 67(5): 374–393. [CrossRef] [Google Scholar]
  • SIA DO 190. 2005. Utilisation de la chaleur du sol par des ouvrages de fondation et de soutènement en béton. Guide pour la conception, la realization et la maintenance. Switzerland : Société Suisse des ingénieurs et des architects. [Google Scholar]
  • Terrasol. 2015. Structure / Station Jules Ferry. Note d’hypotheses geotechniques. [Google Scholar]
  • Vasilescu R, Fauchille A, Dano C, Kotronis P, Manirakiza R, Gotteland P. 2018. Influence De La Temperature a L ’ Interface Sol / Beton Dans Les Pieux Geothermiques: Essais De Faisabilite in Situ Et En Laboratoire. In: Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, Champs-sur-Marne, 2018, pp. 1–7. [Google Scholar]
  • Xia C, Sun M, Zhang G, Xiao S, Zou Y. 2012. Experimental study on geothermal heat exchangers buried in diaphragm walls. Energy Build 52: 50–55. Elsevier B.V. [CrossRef] [Google Scholar]
  • Yavari N, Tang AM, Pereira JM, Hassen G. 2016a. Mechanical behaviour of a small-scale energy pile in saturated clay. Géotechnique 66(11): 878–887. [CrossRef] [Google Scholar]
  • Yavari N, Tang AM, Pereira JM, Hassen G. 2016b. Effect of temperature on the shear strength of soils and the soil-structure interface. Can Geotech J 53(7): 1186–1194. [CrossRef] [Google Scholar]
  • Zannin J, Ferrari A, Pousse M, Laloui L. 2020. Hydrothermal interactions in energy walls. Undergr Space 1–12. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.