Accès gratuit
Numéro |
Rev. Fr. Geotech.
Numéro 176, 2023
|
|
---|---|---|
Numéro d'article | 4 | |
Nombre de pages | 17 | |
DOI | https://doi.org/10.1051/geotech/2024001 | |
Publié en ligne | 14 février 2024 |
- Austrian Society for Geomechanics (Ö.G.G.). 2010. Guideline for the geotechnical design of underground structures with conventional excavation. Salzburg: Österreich Geolog Gesellschaft. [Google Scholar]
- Anagnostou G, Kovári K. 1994. The face stability of slurry shield-driven tunnels. Tunnel & Undergr Spac Tech 9(2): 165–174. [CrossRef] [Google Scholar]
- Atkinson JH, Potts DM. 1977. Stability of a shallow circular tunnel in cohesionless soil. Geotechnique 27(2): 203–215. [CrossRef] [Google Scholar]
- Cai M, Kaiser PKH, Tasaka Y, Minami M. 2007. Determination of residual strength parameters of jointed rock masses using the GSI system. Int. J. of Rock Mech. & Min Sci 44: 247–265. [CrossRef] [Google Scholar]
- Caquot A. 1934. Équilibre des massifs à frottement interne. Paris: Gauthier-Villars. [Google Scholar]
- Caquot A, Kérisel J. 1956. Traité de mécanique des sols, 3e éd. Paris: Gauthier-Villars. [Google Scholar]
- Capes GW. 2009. Open stope hangingwall design based on general and detailed data collection in rock masses with unfavourable hangingwall conditions. Thesis − Dep of Geol and Civ Eng. Canada: Uni. of Saskatchewa. [Google Scholar]
- Carranza-Torres C, Fairhurst C. 1999. The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion. Int J of Rock Mech and Min Sci 36: 777–809. [CrossRef] [Google Scholar]
- Carranza-Torres C, Reich T, Saftner D. 2013. Stability of shallow circular tunnels in soils using analytical and numerical models. Proc of the 61st Minnesota An Geotech Eng Conf. Minnesota: Uni. of Minnesota. [Google Scholar]
- Champagne de Labriolle G. 2018. Détermination de la fenêtre de pilotage de la pression de confinement d ’un tunnelier fermé dans un sol cohérent-frottant ou purement cohérent. Rev Fr Geotech 155(3). https://doi.org/10.1051/geotech/2018005. [Google Scholar]
- Detournay E. 1984. The effect of gravity on the stability of a deep tunnel. Int J Rock Mech & Min Sci & Geomech Abstract 21(6): 349–351. [CrossRef] [Google Scholar]
- García-Gonzalo E, Fernández-Muñiz ZPJ, García Nieto PJ, Sánchez AB, Menéndez Fernández M. 2016. Hard-rock stability analysis for span design in entry-type excavations with learning classifiers. Materials 9(7). https://doi.org/10.3390/ma9070531. [Google Scholar]
- Ghazal R, Hadj-Hassen F, Tijani M. 2011. A new numerical model to study isolated rock blocks around underground excavations taking into account in situ stresses. San Francisco: 45th US Rock Mechanics & Geomechanics Symposium. [Google Scholar]
- Hoek E, Brown ET. 1988. The H&B failure criterium − 1988 update. Toronto: Can Rock Mech Symp, pp. 31–38. [Google Scholar]
- Hoek E, Brown ET. 1997. Practical estimates or rock mass strength. Int J Rock Mech & Min Sci & Geomech Abstracts 34(8): 1165–1186. [CrossRef] [Google Scholar]
- Londe P. 1988. Discussion on the determination of the shear stress failure in rock masses. ASCE J Geotech Eng Div 114(3): 374–376. [CrossRef] [Google Scholar]
- Martin CD, Kaiser PK, McCreath DR. 1999. Hoek-Brown parameters for predicting the depth of brittle failure around tunnels. Can Geotech J 36(1): 136–151. [CrossRef] [Google Scholar]
- Milne D, Hadjigeorgiou J, Pakalnis R. 1998. Rock mass characterization for underground hard rock mines. Tunnel & Undergr Spac Tech 13(4): 383–391. [CrossRef] [Google Scholar]
- Mohammadi H, Farsangi MAF, Jalalifar H, Ahmadi AR. 2013. Influence of gravity loading on the ground reaction curve at tunnel crown based on the nonlinear unified strength criterion. Int Research J of Appl & Bas Sci 6(5): 563–571. [Google Scholar]
- Ono K, Yamada M. 1993. Analysis of the arching action in granular mass. Geotechnique 43(1): 105–120. [CrossRef] [Google Scholar]
- Oreste P. 2014. A numerical approach for evaluating the convergence-confinement curve of a rock tunnel considering Hoek-Brown strength criterion. Am J of Appl Sci 11(12). https://doi.org/10.3844/ajassp.2014.2021.2030. [Google Scholar]
- Oreste P, Hedayat A, Spagnoli G. 2019. Effect of gravity of the plastic zones on the behavior of supports in very deep tunnels excavated in rock masses. Int J Geomech 19(9). https://doi.org/10.1061/(ASCE)GM1943-5622.0001490. [CrossRef] [Google Scholar]
- Osgoui R, Ünal E. 2005. Characterization of weak rock masses using GSI-Index and the estimation of support-pressure. Anchorage: 40th US Rock Mechanics Symposium. [Google Scholar]
- Pacher F. Deformationsmessungen im Versuchsstollen als Mittel zur Erforschung des Gebirgsverhaltens und zur Bemessung des Ausbaues. In : Müller L, ed. Grundfragen auf dem Gebiete der Geomechanik. Felsmechanik und Ingenieurgeologie, vol 1. Berlin, Heidelberg: Springer. 1964. [Google Scholar]
- Panet M. 1973. La stabilité des ouvrages souterrains – Soutènement,et revêtement. Rapport de recherche n°28. Paris: LCPC. [Google Scholar]
- Potvin Y. 1988. Empirical open stope design in Canada, Ph.D. thesis. Canada: The University of B.C., 350 p. [Google Scholar]
- Rabcewicz LV. 1969. Stability of tunnels under rock load. Tunneling and Water Power 1969(6): 225–244. [Google Scholar]
- Ribacchi R. 1993. Recenti orientamenti nelle progettazione statica delle opera in sotterraneo. Proc. XVIII. Rimini: Convegno Nazionale di Geotechnica, pp. 37–93. [Google Scholar]
- Roussev P. 1998. Calculation of the displacements and Pacher’s rock pressure curve by associative law for the fluidity-plastic flow. Tunnel & Undergr Spac Tech 13(4): 441–451. [CrossRef] [Google Scholar]
- Russo G, Kalamaras GS, Grasso P. 1998. A discussion on the concepts of geomechanical classes, behavior categories and technical classes for an underground project. Gallerie e grandi opere sotterranee 54: 40–51. [Google Scholar]
- Russo G. 2008. A simplified rational approach for the preliminary assessment of the excavation behaviour in rock tunnelling. Tunnels et Ouvrages Souterrains 207: 173–180. [Google Scholar]
- Russo G. 2014. An update of the “multiple graph” approach for the preliminary assessment of the excavation behaviour in rock tunnelling. Tunnel & Undergr Spac Tech 41(3): 74–81. [CrossRef] [Google Scholar]
- Terzaghi K. 1943. Theoretical soil mechanics. New York: John Wiley & Sons. [CrossRef] [Google Scholar]
- Terzaghi K. 1946. Rock defects and loads on tunnel supports. Cambridge: Harvard University. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.