Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 156, 2018
Numéro d'article 1
Nombre de pages 23
DOI https://doi.org/10.1051/geotech/2019001
Publié en ligne 6 février 2019
  • Abeyrathne A, Islam T, Kodikara J, Bui H. 2015. Application of MPK framework to interpret volume change behavior of compacted unsaturated soils. Proceedings of the 6th Asia-Pacific Conference on Unsaturated Soils, Guilin, China, 23–26 October 2015, pp. 749–752. doi: 10.1201/b19248-125. [Google Scholar]
  • AFNOR (Association Française de Normalisation). 2018. Terrassement. Parties 1 à 6. [Google Scholar]
  • Al-Badran Y, Schanz T. 2014. Modelling the compaction curve of fine-grained soils. Soils Found 54(3): 426–438. [CrossRef] [Google Scholar]
  • Alonso EE, Pinyol NM, Gens A. 2013. Compacted soil behaviour: initial state, structure and constitutive modelling. Géotechnique 63(6): 463–478. doi: 10.1680/geot.11.P.134. [Google Scholar]
  • Altuhafi FN, Coop MR. 2011. Changes to particle characteristics associated with the compression of sands. Géotechnique 61(6): 459–471. [CrossRef] [Google Scholar]
  • Andrei S. 1977. Propriétés hydrauliques et mécaniques des sols non saturés. Rev Fr Géotech 2: 49–78. [Google Scholar]
  • Azzouz AS, Krizek RJ, Corotis RB. 1976. Regression analysis of soil compressibility. Soils Found 16(2): 19–29. [CrossRef] [Google Scholar]
  • Bal’shin MY. 1938. Metal ceramics. Metallurgizdat (en russe). [Google Scholar]
  • Bell JR. 1977. Compaction energy relationship of cohesive soils. Transport Res Rec 641: 29–34. [Google Scholar]
  • Biarez J, Hicher P-Y. 1997. Influence de la granulométrie et de son évolution par ruptures de grains sur le comportement mécanique de matériaux granulaires. Rev Fr Génie Civil 1(4): 607–631. [Google Scholar]
  • Biarez J, Fleureau JM, Zerhouni MI, Soepandji BS. 1987. Variations de volume des sols argileux lors de cycles de drainage-humidification. Rev Fr Géotech 41: 63–71. doi: 10.1051/geotech/1987041063. [CrossRef] [Google Scholar]
  • Bosi F, Piccolroaz A, Gei M, Dal Corso F, Cocquio A, Bigoni D. 2013. Experimental investigation of the elastoplastic response of aluminum silicate spray dried powder during cold compaction. J Eur Ceram Soc. doi: 10.1016/j.jeurceramsoc.2013.11.037. [Google Scholar]
  • Burland JB. 1990. On the compressibility and shear strength of natural clays. Géotechnique 40(3): 329–378. [CrossRef] [Google Scholar]
  • Burton GJ, Sheng D, Airey D. 2014. Experimental study on volumetric behaviour of Maryland clay and the role of degree of saturation. Can Geotech J 51(12): 1449–1455. doi: 10.1139/cgj-2013-0332. [CrossRef] [Google Scholar]
  • Camapum de Carvalho J, Crispel JJ, Mieussens C, Nardone A. 1987. La reconstitution des éprouvettes en laboratoire. Théorie et pratique opératoire. Rapport de Recherche des LPC, 145, juin 1987, 54 p. [Google Scholar]
  • Casagrande A. 1932. The structure of clay and its importance in foundation engineering. J Boston Soc Civil Eng 19(4): 168–209. [Google Scholar]
  • Cerato AB, Lutenegger A. 2004. Determining intrinsic compressibility of fine-grained soils. J Geotech Geoenviron Eng 130(8): 872–877. [CrossRef] [Google Scholar]
  • Chandler HW, Sands CM, Song JH, Withers PJ, McDonald SA. 2008. A plasticity model for powder compaction processes incorporating particle deformation and rearrangement. Int J Solids Struct 45: 2056–2076. [CrossRef] [Google Scholar]
  • Chong SH, Santamarina JC. 2016. Soil compressibility models for a wide stress range. J Geotech Geoenviron Eng. doi: 10.1061/(ASCE)GT.1943-5606.0001482. [Google Scholar]
  • Chuhan FA, Kjeldstad A, Bjørlykke K, Høeg K. 2003. Experimental compression of loose sands: Relevance to porosity reduction during burial in sedimentary basins. Can Geotech J 40: 995–1011. [Google Scholar]
  • Cotecchia F, Chandler RJ. 2000. A general framework for the mechanical behaviour of clays. Géotechnique 50(4): 431–447. doi: 10.1680/geot.2000.50.4.431. [Google Scholar]
  • Cotecchia F, Cafaro F, Guglielmi S. 2016. Microstructural changes in clays generated by compression explored by means of SEM and Image Processing. Procedia Eng 158: 57–62. [Google Scholar]
  • Crispim FA, Lima D, Schaefer CEGR, et al. 2011. The influence of laboratory compaction methods on soil structure: Mechanical and micromorphological analyses. Soils Rocks 34(1): 91–98. [Google Scholar]
  • Cui YJ, Delage P. 1996. Yielding and plastic behaviour of an unsaturated compacted silt. Geotechnique 46(2): 291–311. [Google Scholar]
  • Cuisinier O, Laloui L. 2004. Fabric evolution during hydromechanical loading of a compacted silt. Int J Numer Anal Methods Geomech 28(6): 483–499. [Google Scholar]
  • Dadda A, Ghabezloo S, Feia S, Sulem J. 2015. Fracturation des grains et l’évolution de la microstructure d’un sable sous fortes contraintes. Conference Paper, October 2015. doi: 10.13140/RG.2.1.1976.2002. [Google Scholar]
  • Daouadji A, Hicher PY, Rahma A. 2001. An elastoplastic model for granular materials taking into account grain breakage. Eur J Mech – A/Solids 20(1): 113–137. doi: 10.1016/S0997-7538(00)01130-X. [CrossRef] [Google Scholar]
  • De Bono JP, McDowell GR. 2017. Validation of the log e-log σ normal compression law using particle strength data. Geotechnique. doi: 10.1680/jgeot.17.T.007 [Google Scholar]
  • Delage P, Audiguier M, Cui YJ, Howat D. 1996. Microstructure of a compacted silt. Can Geotech J 33(1): 150–158. [Google Scholar]
  • Delage P. 2010. A microstructure approach to the sensitivity and compressibility of some Eastern Canada sensitive clays. Géotechnique 60(5): 353–368. doi: 10.1680/geot.2010.60.5.353 [CrossRef] [Google Scholar]
  • Delage P, Fry JJ. 2000. Comportement des sols compactés : apports de la mécanique des sols non saturés. Rev Fr Géotech 92: 17–29. [Google Scholar]
  • Doris-Asmani MY, Hafez MA, Nurbaya S. 2011. Static laboratory compaction method. Electron J Geotech Eng 16 M: 1583–1593. [Google Scholar]
  • Droniuc N. 2013. Étude par la méthode des éléments finis du comportement des remblais en sols fins compactés. Proceeding of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, pp. 1097–1100. [Google Scholar]
  • Ekwue EI, Birch R, Chewitt J. 2014. Effect of dynamic and static methods of compaction on soil strength. The West Indian J Eng 37(2): 74–78. [Google Scholar]
  • Ferber V, Auriol JC, Cui YJ, Magnan JP. 2008. Comportement des sols fins compactés à l’humidification. Apport d’un modèle de microstructure. Rev Fr Géotech 122: 13–24. [Google Scholar]
  • Fleureau JM, Kheirbek-Saoud S. 1992. Variations de résistance des sols compactés avec la pression interstitielle négative. Rev Fr Géotech 59: 57–64. [CrossRef] [Google Scholar]
  • Fredlund DG, Rahardjo H. 1993. Soil mechanics for unsaturated soils. New York: John Wiley & Sons, Inc. [Google Scholar]
  • Golightly CR. 1989. Engineering properties of carbonate sands. Ph.D. dissertation, Bradford University, UK. [Google Scholar]
  • Guérif J. 1982. Compactage d’un massif d’agrégats : effet de la teneur en eau et de la pression appliquée. Agronomie, EDP Sciences 2(3): 287–294. [Google Scholar]
  • Hafez MA, Doris Asmani MY, Nurbaya S. 2010. Comparison between static and dynamic laboratory compaction methods, Electron J Geotech Eng 15: 1641–1650. [Google Scholar]
  • Hagerty MM, Hite DR, Ullrich CR, Hagerty DJ. 1993. One‐dimensional high‐pressure compression of granular media. J Geotech Eng 119(1): 1–18. [CrossRef] [Google Scholar]
  • Han LH, Elliott JA, Bentham AC, Mills A, Amidon GE, Hancock BC. 2008. A modified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders. Int J Solids Struct 45: 3088–3106. [CrossRef] [Google Scholar]
  • Hattab M, Hammad T, Fleurau JM. 2010. Compressibility behaviour of soft clay sediments. Proceeding of the GeoShanghai Conférence, May 2010, 6 p. doi: 10.1061/41101(374)4. [Google Scholar]
  • Hattab M, Hammad T, Fleureau JM, Hicher PY. 2013. Behaviour of a sensitive marine sediment: microstructural investigation. Géotechnique 63(1): 71–84. [CrossRef] [Google Scholar]
  • Hicher PY, Kim MS, Rahma A. 1995. Experimental evidence and modelling of grain breakage influence on mechanical behaviour of granular media. In: International Workshop, Homogenization, Theory of Migration and Granular Bodies, Gdansk-Kormoran, pp. 125–133. [Google Scholar]
  • Hilf JW. 1956. An investigation of pore water pressures in compacted cohesive soils, Technical Memorandum 654, U. S. Department of the Interior, Bureau of Reclamation, Denver, Colorado. [Google Scholar]
  • Hong ZS, Zeng LL, Cui YJ, Cai YQ, Lin C. 2012. Compression behaviour of natural and reconstituted clays. Géotechnique 62(4): 291–301. [CrossRef] [Google Scholar]
  • Horpibulsuk S, Katkan W, Apichatvullop A. 2008. An approach for assessment of compaction curves of fine-grained soils at various energies using a one point test. Soils Found 48(2): 115–126. [CrossRef] [Google Scholar]
  • Horpibulsuk S, Suddeepong A, Chamket P, Chinkulkijniwat A. 2013. Compaction behavior of fine-grained soils, lateritic soils and crushed rocks. Soils Found 53(1): 166–172. [CrossRef] [Google Scholar]
  • Islam T, Kodikara J. 2016. Interpretation of the loading–wetting behaviour of compacted soils within the “MPK” framework. Part I: Static compaction. Can Geotech J 53(5): 783–805. doi: 10.1139/cgj-2014-0316. [CrossRef] [Google Scholar]
  • Jennings JE, Burland JB. 1962. Limitations to the use of effective stresses in partly saturated soils. Géotechnique 12(2): 125–144. [CrossRef] [Google Scholar]
  • Joslin JC. 1959. Ohio’s typical water-density curves. American Society for Testing and Materials. Special Technical Publication STP239, pp. 111–118. [Google Scholar]
  • Juarez-Badillo E. 1981. General compressibility equation for soils. Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, pp. 171–178. [Google Scholar]
  • Keller T, Lamande M, Peth S, et al. 2013. An interdisciplinary approach towards improved understanding of soil deformation during compaction. Soil Tillage Res 128: 61–80. [CrossRef] [Google Scholar]
  • Kieu MT, Mahler A. 2018. A study on the relationship between matric suction and the void ratio and moisture content of a compacted unsaturated soil. Period Polytech Civil Eng 62(3): 709–716. doi: 10.3311/PPci.11974. [Google Scholar]
  • Kodikara J. 2012. New framework for volumetric constitutive behaviour of compacted unsaturated soils. Can Geotech J 49(11): 1227–1243. doi: 10.1139/t2012-084. [CrossRef] [Google Scholar]
  • Kodikara J, Islam T, Rajeev P. 2016. Interpretation of the loading-wetting behaviour of compacted soils within the “MPK” framework. Part II: Dynamic compaction. Can Geotech J 53(5): 806–827. doi: 10.1139/cgj-2014-0317. [CrossRef] [Google Scholar]
  • Koliji A, Laloui L, Vulliet L. 2009. Behaviour of unsaturated aggregated soil in oedometric condition. Soils Found 49(3): 369–380. [CrossRef] [Google Scholar]
  • Kumar R, Jain PK, Dwivedi P. 2016. Prediction of compression index (Cc) of fine grained remolded soils from basic soil properties. Int J Appl Eng Res 11(1): 592–598. [Google Scholar]
  • Lambe TW. 1958. The engineering behaviour of compacted clay. J Soil Mech Found Divis, ASCE 84(2): 1–35. [Google Scholar]
  • Lambe TW. 1961. Residual pore pressures in compacted clay. Proceeding 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, France, 1/35, pp. 207–211. [Google Scholar]
  • Lawton EC, Fragaszy RJ, Hetherington MD. 1992. Review of wetting‐induced collapse in compacted soil. J Geotech Eng 118(9): 1376–1394. doi: 10.1061/(ASCE)0733-9410(1992)118:9(1376) [CrossRef] [Google Scholar]
  • LCPC, SETRA. 2000. Guide technique pour les terrassements routiers (GTR). Réalisation des remblais et des couches de forme. Juillet 2000, 2e Édition. Fascicule I, Principes généraux, 98 p, Fascicule II, Annexes techniques, 102 p. [Google Scholar]
  • Leclercq J, Verbrugge JC. 1985. Propriétés géomécaniques des sols non saturés. Compte rendu du Colloque Int. sur le Travail du Sol, Faculté des Sciences Agronomiques de Gembloux, Gembloux, Belgique, pp. 1–8. [Google Scholar]
  • Leonards GA. 1955. Strength characteristics of compacted clays. Trans ASCE 120: 1420–1454. [Google Scholar]
  • Leong EC, Widiastuti S, Rahardjo H. 2013. Estimating wetting-induced settlement of compacted soils using oedometer test. Geotech Eng J SEAGS & AGSSEA 44(1): 26–33. [Google Scholar]
  • Leroueil S, Vaughan PR. 1990. The general and congruent effects of structure in natural soils and weak rocks. Géotechnique 40(3): 467–488. [CrossRef] [Google Scholar]
  • Leroueil S, Tavenas F, Brucy F, La Rochelle P, Roy M. 1979. Behavior of destructured natural clays. J Geotech Eng 105(6): 759–778. [Google Scholar]
  • Lin PS, Lowell CW. 1981. Compressibility of field compacted clay. Joint Research Highway Research, Project report No. C36-5M. Purdue University, 153 p. [CrossRef] [Google Scholar]
  • Liu MD, Carter JP. 1999. Virgin compression of structured soils. Géotechnique 49(1): 43–57. [CrossRef] [Google Scholar]
  • Liu MD, Carter JP. 2000. Modelling the destructuring of soils during virgin compression. Géotechnique 50(4): 479–483. [CrossRef] [Google Scholar]
  • Liu MD, Horpibulsuk S, Du YJ. 2015. Framework for the destructuring of clays during compression. Geotech Eng J 46(4): 96–101. [Google Scholar]
  • Lloret-Cabot M, Wheeler SJ, Sánchez M. 2017. A unified mechanical and retention model for saturated and unsaturated soil behaviour. Acta Geotech 12(1): 1–21. doi: 10.1007/s11440-016-0497-x. [CrossRef] [Google Scholar]
  • Low HE, Phoon KK, Tan TS, Leroueil S. 2008. Effect of soil microstructure on the compressibility of natural Singapore marine clay. Rev Can Géotech 45(2): 161–176. doi: 10.1139/T07-075. [CrossRef] [Google Scholar]
  • Lutenegger AJ, Saber RT. 1988. Determination of collapse potential of soils. Geotech Test J 11(3): 173–178. [CrossRef] [Google Scholar]
  • McDowell GR. 2002. On the yielding and plastic compression of sand. Soils Found 42(1): 139–145. [CrossRef] [Google Scholar]
  • McDowell GR, Bolton MD. 1998. On the micromechanics of crushable aggregates. Géotechnique 48(5): 667–679. [CrossRef] [Google Scholar]
  • Menon M, Jia X, Lair GJ, Faraj PH, Blaud A. 2015. Analysing the impact of compaction of soil aggregates using X-ray microtomography and water flow simulations. Soil Tillage Res 150: 147–157. doi: 10.1016/j.still.2015.02.004. [CrossRef] [Google Scholar]
  • Mesbah A, Morel JC, Olivier M. 1999. Comportement des sols fins argileux pendant un essai de compactage statique : détermination des paramètres pertinents. Mater Struct 32(9): 687–694. [Google Scholar]
  • Mieussens C. 1993. Détermination de la sensibilité des sols aux variations de teneur en eau en laboratoire. Essais à l’oedomètre sur les sols compactés. Projet de méthode LPC, Rapport du LRPC de Toulouse, 12 p. [Google Scholar]
  • Moussaï B, Didier G, Atlan Y. 1993. Étude d’un matériel de compactage statique et de mesure de la perméabilité des sols fins argileux. Bull Liaison Lab Ponts Chaussées 188: 15–22. [Google Scholar]
  • Mun W, McCartney JS. 2015. Compression mechanisms of unsaturated clay under high stresses. Can Geotech J 52: 1–14. doi: 10.1139/cgj-2014-0438. [Google Scholar]
  • Nagaraja TS, Srinivasa Murthy BR. 1983. Rationalization of Skempton’s compressibility equation. Géotechnique 33(4): 433–443. [CrossRef] [Google Scholar]
  • Nakata Y, Kato Y, Hyodo M, Hyde AFL, Murata H. 2001. One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. Soils Found 41 (2): 39–51. doi: 10.3208/sandf.41.2_39. [Google Scholar]
  • Pandian NS, Nagaraj TS, Manoj M. 1997. Re-examination of compaction characteristics of fine-grained soils. Géotechnique 47(2): 363–366. [CrossRef] [Google Scholar]
  • Pestana JM, Whittle AJ. 1995. Compression model for cohesionless soils. Géotechnique 45(4): 611–631. doi: 10.1680/geot.1995.45.4.611. [CrossRef] [Google Scholar]
  • Qian S, Shi J, Ding JW. 2016. Modified Liu-Carter compression model for natural clays with various initial water contents. Advances in Civil Engineering, 2016, 8 p. doi: 10.1155/2016/1691605. [CrossRef] [Google Scholar]
  • Rücknagel J, Götze P, Hofmann B, Christen O, Marschall K. 2016. The influence of soil gravel content on compaction behaviour and pre-compression stress. Geoderma 209–210: 226–232. [Google Scholar]
  • Russell AR. 2011. A compression line for soils with evolving particle and pore size distributions due to particle crushing. Géotech Lett 1: 5–9. doi: 10.1680/geolett.10.00003. [CrossRef] [Google Scholar]
  • Saad S, Mirzababaei M, Mohamed M, Miraftab M. 2012. Uniformity of density of compacted fibre reinforced clay soil samples prepared by static compaction. Proceeding of 5th European Geosynthetics Congress, Valencia, Spain. [Google Scholar]
  • Saffit-Hdadi K, Défossez P, Richard G, Cui YJ, Tang AM. 2009. A method to predict the soil susceptibility to compaction of surface layers as a function of water content and bulk density. Soil Tillage Res 105: 96–103. [CrossRef] [Google Scholar]
  • Schmertmann JH. 1991. The mechanical aging of soils. J Geotech Eng 117(9): 1288–1330. [CrossRef] [Google Scholar]
  • Seed HB. 1954. Stability and swell pressure characteristics of compacted clays. Clays Clay Miner 3 (1): 483–504. doi: 10.1346/CCMN.1954.0030140. [CrossRef] [Google Scholar]
  • Seed HB, Chan CK. 1959. Structure and strength characteristics of compacted clays. J Soil Mech Found Divis, ASCE 85(5): 87–128. [Google Scholar]
  • Serratrice JF. 1995a. Comportement d’une argile compactée. Bull Liaison Lab Ponts Chaussées 200: 13–24. [Google Scholar]
  • Serratrice JF. 1995b. Comportement d’une craie compactée. Colloquium Mundanum, Craies et schistes, Bruxelles, pp. 1.1.71–1.1.80. [Google Scholar]
  • Serratrice JF. 2013. Comportement d’un limon compacté. Bull Lab Ponts Chaussées 280–281: 105–122. [Google Scholar]
  • Sharma B, Sridharan A, Talukdar P. 2016. Static method to determine compaction characteristics of fine-grained soils. Geotech Test J. doi: 10.1520/GTJ20150221. [Google Scholar]
  • Sharma SS, Ismail MA. 2016. A new normalisation scheme for normal compression and critical state line for soils. Int J Geo-Eng 2016: 7–21. doi: 10.1186/s40703-016-0034-7. [Google Scholar]
  • Sheng D, Yao Y, Carter JP. 2008. A volume-stress model for sands under isotropic and critical stress states. Can Geotech J 45: 1639–1645. [CrossRef] [Google Scholar]
  • Shipton B, Coop MR. 2012. On the compression behaviour of reconstituted soils. Soils Found 52(4), 668–681. [CrossRef] [Google Scholar]
  • Sivakumar V, Wheeler SJ. 2000. Influence of compaction procedure on the mechanical behaviour of an unsaturated compacted clay, Part 1: Wetting and isotropic compression. Géotechnique 50(4): 359–368. [CrossRef] [Google Scholar]
  • Skempton AW, Jones OT. 1944. Note on the compressibility of clays. Q J Geol Soc Lond 100: 119–135. doi: 10.1144/GSL.JGS.1944.100.01-04.08. [CrossRef] [Google Scholar]
  • Skempton AW, Northey RD. 1952. The sensitivity of clays. Géotechnique 2(1): 30–53. [CrossRef] [Google Scholar]
  • Sun D, Sheng D, Xu Y. 2007. Collapse behaviour of unsaturated compacted soil with different initial densities. Rev Can Géotech 44(6): 673–686. doi: 10.1139/t07-023. [Google Scholar]
  • Tarantino A, De Col E. 2008. Compaction behaviour of clay. Géotechnique 58(3): 199–213. doi: 10.1680/geot.2008.58.3.199. [CrossRef] [Google Scholar]
  • Terracina F. 1955. Variabilité des caractéristiques d’état des sols. Représentation graphique. Rev Gén Routes Aérodr 279: 61–78. [Google Scholar]
  • Terzaghi K. 1927. Principles of final soil classification. Public Roads 8: 41. [Google Scholar]
  • Vaughan PR. 2003. Observations on the behaviour of clay fill containing occluded air bubbles. Géotechnique 53(2): 265–272. [CrossRef] [Google Scholar]
  • Venkatarama Reddy BV, Jagadish KS. 1993. The static compaction of soils. Géotechnique 43(2): 337–341. [CrossRef] [Google Scholar]
  • Walker EE. 1923. The properties of powders. Part VI. The compressibility of powders. Trans Faraday Soc 19: 73–82. doi: 0.1039/tf9231900073. [CrossRef] [Google Scholar]
  • Wang SY, Chan DH, Lam KC, Au SKA. 2011. Laboratory study of static and dynamic compaction grouting in triaxial condition. Geomech Geoeng 6(1): 9–19. [CrossRef] [Google Scholar]
  • Wang Y, Cui YJ, Benahmed N, Duc M, Tang AM. 2017. Effects of aggregate size on the compressibility and air permeability of lime-treated fine-grained soil. Eng Geol 228: 167–172. [CrossRef] [Google Scholar]
  • Wu Y, Yamamoto H, Izumi A. 2016. Experimental investigation on crushing of granular material in one-dimensional test. Period Polytech Civil Eng 60(1): 27–36. doi: 10.3311/PPci.8028. [CrossRef] [Google Scholar]
  • Yaghoubi E, Disfani MM, Arulrajah A, Kodikara J. 2018. Impact of compaction method on mechanical characteristics of unbound granular recycled materials. Road Mater Pavement Des 19(4): 912–934. [CrossRef] [Google Scholar]
  • Yamamuro JA, Bopp PA, Lade PV. 1996. One dimensional compression of sands at high pressures. J Geotech Eng 122(2): 147–154. [Google Scholar]
  • Yang C, Carter JP, Sheng D. 2014. Description of compression behaviour of structured soils and its application. Rev Can Géotech 51(8): 921–933. doi: 10.1139/cgj-2013-0265. [CrossRef] [Google Scholar]
  • Yoon GL, Kim BT, Jeon SS. 2004. Empirical correlations of compression index for marine clay from regression analysis. Can Geotech J 41(6): 1213–1221. [CrossRef] [Google Scholar]
  • Zeng LL, Hong ZS, Cui YJ. 2015. Determining the virgin compression lines of reconstituted clays at different initial water contents. Can Geotech J 52(9): 1408–1415. [CrossRef] [Google Scholar]
  • Zhemchuzhnikov A, Ghavami K, dal Toé Casagrande M. 2015. Static compaction of soils with varying clay content. Key Eng Mater 668: 238. doi: 10.4028/www.scientific.net/KEM.668.238. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.