Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 163, 2020
Chutes de bloc, Risques Rocheux et Ouvrages de Protection (C2ROP)
Numéro d'article 2
Nombre de pages 8
DOI https://doi.org/10.1051/geotech/2020011
Publié en ligne 2 octobre 2020
  • Barlow J, Lim M, Rosser N, et al. 2012. Modeling cliff erosion using negative power law scaling of rockfalls. Geomorphology 139–140: 416–424. [CrossRef] [Google Scholar]
  • Brunetti MT, Guzzetti F, Rossi M. 2009. Probability distributions of landslide volumes. Nonlinear Process. Geophys 16: 179–188. [CrossRef] [Google Scholar]
  • D’Amato J. 2015. Apport des bases de données d’éboulements rocheux obtenues par scanner laser dans la caractérisation des conditions de rupture et processus associés. Thèse de doctorat. Université Grenoble-Alpes. [Google Scholar]
  • De Biagi V, Napoli M-L, Barbero M, Peila D. 2017. Estimation of the return period of rockfall blocks according to their size. Nat Hazards Earth Syst Sci 17: 103–113. [CrossRef] [Google Scholar]
  • Dewez TJB, Rohmer J, Regard V, Cnudde C. 2013. Probabilistic coastal cliff collapse hazard from repeated terrestrial laser surveys: case study from Mesnil Val (Normandy, northern France). J Coast Res 65: 702–707. [CrossRef] [Google Scholar]
  • Dussauge-Peisser C, Helmstetter A, Grasso J-R, Hantz D, Jeannin M, Giraud A. 2002. Probabilistic approach to rock fall hazard assessment: potential of historical data analysis. Nat Hazards Earth Syst Sci 2: 15–26. [CrossRef] [Google Scholar]
  • Farvacque M, Lopez-Saez J, Corona C, Toe D, Bourrier F, Eckert N. 2019. Quantitative risk assessment in a rockfall-prone area: the case study of the Crolles municipality (Massif de la Chartreuse, French Alps). Geomorphol Relief Process Environ 25: 1. [Google Scholar]
  • Hantz D, Vengeon J-M, Dussauge-Peisser C. 2003a. An historical, geomechanical and probabilistic approach to rock-fall hazard assessment. Nat Hazards Earth Syst Sci 3: 693–701. [CrossRef] [Google Scholar]
  • Hantz D, Dussauge-Peisser C, Jeannin M, Vengeon J-M. 2003b. Rock fall hazard assessment: from qualitative to quantitative failure probability. In: Int. conf. on Fast Slope Movements, Naples, 11–13 May 2003: 263–267. [Google Scholar]
  • Hantz D, Ventroux Q, Rossetti J-P, Berger F. A new approach of diffuse rockfall hazard. In: Aversa, et al., eds. Landslides and engineered slopes. Rome, Italy: Associazione Geotecnica Italiana, 2016, pp. 1063–1067. [Google Scholar]
  • Hantz D, Rossetti J-P, Valette D, Bourrier F. 2017. Quantitative rockfall hazard assessment at the Mont Saint-Eynard (French Alps). In: 6th Interdisciplinary Workshop on Rockfall Protection, Barcelona, Spain. [Google Scholar]
  • Hantz D, Levy C. 2019. Quantification de l’aléa diffus. In: Rapport C2ROP, 29 p. [Google Scholar]
  • Hoek E. 2007. Rock mass properties. Practical rock engineering, chapter 11. Available from http://www.rocscience.com/education/hoeks_corner (last consult: 2020/03/02). [Google Scholar]
  • Hungr O, Evans SG, Hazzard J. 1999. Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Can Geotech J 36: 224–238. [CrossRef] [Google Scholar]
  • MATE/METL. 1999. Guide méthodologique PPR, risques de mouvements de terrain. Paris: La Documentation française, 71 p. [Google Scholar]
  • Mavrouli O, Corominas J, Jaboyedoff M. 2015. Size distribution for potentially unstable rock masses and in situ rock blocks using LIDAR-generated digital elevation models. Rock Mech Rock Eng 48: 1589–1604. [CrossRef] [Google Scholar]
  • Mavrouli O, Corominas J. 2020. Evaluation of maximum rockfall dimensions based on probabilistic assessment of the penetration of the sliding planes into the slope. Rock Mech Rock Eng 53: 2301–2312. Available from https://doi.org/10.1007/s00603-020-02060-z. [CrossRef] [Google Scholar]
  • Moos C, Fehlmann M, Trappmann D, Stoffel M, Dorren L. 2018. Integrating the mitigating effect of forests into quantitative rockfall risk analysis − Two case studies in Switzerland. Int J. Disaster Risk Reduct 32: 55–74. [CrossRef] [Google Scholar]
  • Ravanel L, Magnin F, Deline P. 2017. Impacts of the 2003 and 2015 summer heatwaves on the permafrost-affected rock walls in the Mont Blanc massif. Sci Total Environ 609: 132–143. Available from https://doi.org/10.1016/j.scitotenv.2017.07.055. [CrossRef] [Google Scholar]
  • Ruiz-Carulla R, Corominas J, Mavrouli O. Comparison of block size distribution in rockfalls. In: Aversa, et al., eds. Landslides and engineered slopes. Rome, Italy: Associazione Geotecnica Italiana, 2016, pp. 1767. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.