Accès gratuit
Review
Numéro |
Rev. Fr. Geotech.
Numéro 176, 2023
|
|
---|---|---|
Numéro d'article | 1 | |
Nombre de pages | 18 | |
DOI | https://doi.org/10.1051/geotech/2023020 | |
Publié en ligne | 7 novembre 2023 |
- Andreotti B, Forterre Y, Pouliquen O. 2013. Granular media: between fluid and solid. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139541008. [CrossRef] [Google Scholar]
- Aubaud C, Athanase JE, Clouard V, Barras AV, Sedan O. 2013. A review of historical lahars, floods, and landslides in the Prêcheur river catchment (Montagne Pelee volcano, Martinique island, Lesser Antilles). Bull Soc Géol Fr 184(1–2): 137–154. https://doi.org/10.2113/gssgfbull.184.1-2.137. [CrossRef] [Google Scholar]
- Baker JL, Barker T, Gray JMNT. 2016. A two-dimensional depth-averaged mu(I)-rheology for dense granular avalanches. J Fluid Mech 787: 367–395. https://doi.org/10.1017/jfm.2015.684. [CrossRef] [Google Scholar]
- Barré de Saint-Venant AJC. 1871. Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit. C R Hebd Séances Acad Sci LXXIII. Sous la dir. d’A. des sciences. [Google Scholar]
- Berti M, Simoni A. 2014. DFLOWZ: A free program to evaluate the area potentially inundated by a debris flow. Computers & Geosciences 67: 14–23. https://doi.org/10.1016/j.cageo.2014.02.002. [CrossRef] [Google Scholar]
- Bouchut F, Delgado-Sánchez J, Fernández-Nieto E, Mangeney A, Narbona-Reina G. 2022. A bed pressure correction of the friction term for depth-averaged granular flow models. Applied Mathematical Modelling 106: 627–658. https://doi.org/10.1016/j.apm.2022.01.034. [CrossRef] [Google Scholar]
- Bouchut F, Fernández-Nieto ED, Mangeney A, Lagrée PY. 2008. On new erosion models of Savage-Hutter type for avalanches. Acta Mechanica 199(1–4): 181–208. https://doi.org/10.1007/s00707-007-0534-9. [CrossRef] [Google Scholar]
- Bouchut F, Fernández-Nieto ED, Mangeney A, Narbona-Reina G. 2016. A two-phase two-layer model for fluidized granular flows with dilatancy effects. Journal of Fluid Mechanics 801: 166–221. https://doi.org/10.1017/jfm.2016.417. [CrossRef] [Google Scholar]
- Bouchut F, Mangeney-Castelnau A, Perthame B, Vilotte P. 2003. A new model of Saint Venant and Savage-Hutter type for gravity driven shallow water flows. Comptes Rendus Mathématique 336(6): 531–536. https://doi.org/10.1016/S1631-073X(03)00117-1. [CrossRef] [Google Scholar]
- Bouchut F, Westdickenberg M. 2004. Gravity driven shallow water models for arbitrary topography. Communications in Mathematical Sciences 2(3): 359–389. [CrossRef] [Google Scholar]
- Bout B, Lombardo L, van Westen C, Jetten V. 2018. Integration of two-phase solid fluid equations in a catchment model for flashfloods, debris flows and shallow slope failures. Environmental Modelling & Software 105: 1–16. https://doi.org/10.1016/j.envsoft.2018.03.017. [CrossRef] [Google Scholar]
- Brunet M, Moretti L, Le Friant A, Mangeney A, Fernández Nieto ED, Bouchut F. 2017. Numerical simulation of the 30–45 ka debris avalanche flow of Montagne Pelée volcano, Martinique : from volcano flank collapse to submarine emplacement. Natural Hazards 87(2): 1189–1222. https://doi.org/10.1007/s11069-017-2815-5. [CrossRef] [Google Scholar]
- Chow VT. 1959. Open-channel hydraulics. Caldwell, NJ: McGraw Hill Book Company. [Google Scholar]
- Christen M, Kowalski J, Bartelt P. 2010. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology 63(1–2): 1–14. https://doi.org/10.1016/j.coldregions.2010.04.005. [CrossRef] [Google Scholar]
- Clouard V, Athanase JE, Aubaud C. 2013. Physical characteristics and triggering mechanisms of the –2010 landslide crisis at Montagne Pelee volcano, Martinique : implication for erosional processes and debris-flow hazards. Bulletin de la Société Géologique de France 184(1–2): 155–164. https://doi.org/10.2113/gssgfbull.184.1-2.155. [CrossRef] [Google Scholar]
- Corominas J. 1996. The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal 33(2): 260–271. https://doi.org/10.1139/t96-005. [CrossRef] [Google Scholar]
- Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, et al. 2014. Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment 73(2): 209–263. https://doi.org/10.1007/s10064-013-0538-8. [Google Scholar]
- Coussot P. 1994. Steady, laminar, flow of concentrated mud suspensions in open channel. Journal of Hydraulic Research 32(4): 535–559. https://doi.org/10.1080/00221686.1994.9728354. [CrossRef] [Google Scholar]
- Coussot P, Leonov AI, Piau JM. 1993. Rheology of concentrated dispersed systems in a low molecular weight matrix. Journal of Non-Newtonian Fluid Mechanics 46(2): 179–217. https://doi.org/10.1016/0377-0257(93)85046-D. [CrossRef] [Google Scholar]
- Coussot, P, Meunier M. 1996. Recognition, classification and mechanical description of debris flows. Earth-Science Reviews 40(3–4): 209–227. https://doi.org/10.1016/0012-8252(95)00065-8. [CrossRef] [Google Scholar]
- Cruden D, Varnes D. 1996. Landslide types and processes. Landslides: investigation and mitigation. Special report 247. Transportation research board, US National Research Council, pp. 36–75. [Google Scholar]
- Delannay R, Valance A, Mangeney A, Roche O, Richard P. 2017. Granular and particle-laden flows: from laboratory experiments to field observations. Journal of Physics D: Applied Physics 50(5): 053001. https://doi.org/10.1088/1361-6463/50/5/053001. [CrossRef] [Google Scholar]
- Den Eeckhaut MV, Marre A, Poesen J. 2010. Comparison of two landslide susceptibility assessments in the Champagne-Ardenne region (France). Geomorphology 115(1): 141–155. https://doi.org/10.1016/j.geomorph.2009.09.042. [CrossRef] [Google Scholar]
- Denlinger RP, Iverson RM. 2004. Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. Journal of Geophysical Research: Earth Surface 109(F1). https://doi.org/10.1029/2003JF000085. [Google Scholar]
- Dikau R, Brunsden D, Schrott L, Ibsen ML, eds. 1996. Landslide recognition: identification, movement and causes. Wiley. New York, 210 p. [Google Scholar]
- Dressler RF. 1978. New Nonlinear Shallow-Flow Equations with Curvature. Journal of Hydraulic Research 16(3): 205–222. https://doi.org/10.1080/00221687809499617. [CrossRef] [Google Scholar]
- Dubois L, Dauphin S, Rul G. 2016. Le glissement du Chambon : évolution du phénomène et gestion de crise. Revue Française de Géotechnique 148(148): 2. https://doi.org/10.1051/geotech/2016010. [CrossRef] [EDP Sciences] [Google Scholar]
- Dumaisnil C, Thouret JC, Chambon G, Doyle EE, Cronin SJ, Surono. 2010. Hydraulic, physical and rheological characteristics of rain-triggered lahars at Semeru volcano, Indonesia. Earth Surface Processes and Landforms 35(13): 1573–1590. https://doi.org/10.1002/esp.2003. [CrossRef] [Google Scholar]
- Durand V, Mangeney A, Haas F, Jia X, Bonilla F, Peltier A et al. 2018. On the link between external forcings and slope instabilities in the Piton de la Fournaise summit crater, Reunion Island. Journal of Geophysical Research: Earth Surface 123(10): 2422–2442. https://doi.org/10.1029/2017JF004507. [CrossRef] [Google Scholar]
- Edwards, AN, Viroulet S, Kokelaar BP, Gray JMNT. 2017. Formation of levees, troughs and elevated channels by avalanches on erodible slopes. Journal of Fluid Mechanics 823: 278–315. https://doi.org/10.1017/jfm.2017.309. [CrossRef] [Google Scholar]
- Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ. 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology. Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning 102(3): 85–98. https://doi.org/10.1016/j.enggeo.2008.03.022. [Google Scholar]
- Fernández-Nieto ED, Garres-Díaz J, Mangeney A, Narbona-Reina G. 2016. A multilayer shallow model for dry granular flows with the μ(I)-rheology: application to granular collapse on erodible beds. Journal of Fluid Mechanics 798: 643–681. https://doi.org/10.1017/jfm.2016.333. [CrossRef] [Google Scholar]
- Fernández-Nieto E, Garres-Díaz J, Mangeney A, Narbona-Reina G. 2018. 2D granular flows with the μ(I)-rheology and side walls friction: A well-balanced multilayer discretization. Journal of Computational Physics 356: 192–219. https://doi.org/10.1016/j.jcp.2017.11.038. [CrossRef] [Google Scholar]
- Frimberger T, Andrade SD, Weber S, Krautblatter M. 2021. Modelling future lahars controlled by different volcanic eruption scenarios at Cotopaxi (Ecuador) calibrated with the massively destructive 1877 lahar. Earth Surface Processes and Landforms 46(3): 680–700. https://doi.org/10.1002/esp.5056. [CrossRef] [Google Scholar]
- Froude MJ, Petley D. 2018. Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences 18(8): 2161–2181. https://doi.org/10.5194/nhess-18-2161-2018. [CrossRef] [Google Scholar]
- GDR MiDi. 2004. On dense granular flows. The European Physical Journal E14(4): 341–365. [CrossRef] [Google Scholar]
- Givry M, Peteuil C. 2011. Construire en montagne, la prise en compte du risque torrentiel. 5086-D-12/E/295. Ministère de l’Écologie, du Développement durable, des Transports et du Logement. [Google Scholar]
- Gray J, Wieland M, Hutter K. 1999. Gravity-driven free surface flow of granular avalanches over complex basal topography. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 455: 1841–1874. [CrossRef] [Google Scholar]
- Gray JMNT, Edwards AN. 2014. A depth-averaged μ(I)-rheology for shallow granular free-surface flows. Journal of Fluid Mechanics 755: 503–534. https://doi.org/10.1017/jfm.2014.450. [CrossRef] [Google Scholar]
- Guimpier A, Conway SJ, Mangeney A, Lucas A, Mangold N, Peruzzetto M, et al. 2021. Dynamics of recent landslides (<20 My) on Mars : Insights from high-resolution topography on Earth and Mars and numerical modelling. Planetary and Space Science 206: 105303. https://doi.org/10.1016/j.pss.2021.105303. [CrossRef] [Google Scholar]
- Guyomard Y, Mengin M, Colas B, Thiery Y, Mardhel V, Monge O. 2021. L’aléa naturel glissements de terrain en Nouvelle-Calédonie. Géologues–Géosciences et société. La Nouvelle-Calédonie 209. [Google Scholar]
- Hürlimann M, Rickenmann D, Medina V, Bateman A. 2008. Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Engineering Geology 102(3–4): 152–163. https://doi.org/10.1016/j.enggeo.2008.03.012. [CrossRef] [Google Scholar]
- INSEE. 2015. Données carroyées – Niveau naturel. Disponible sur : https://www.insee.fr/fr/statistiques/4176281?sommaire=4176305 (dernière consultation: 2022/28/02). [Google Scholar]
- Ionescu IR, Mangeney A, Bouchut F, Roche O. 2015. Viscoplastic modeling of granular column collapse with pressure-dependent rheology. Journal of Non-Newtonian Fluid Mechanics 219: 1–18. https://doi.org/10.1016/j.jnnfm.2015.02.006. [CrossRef] [Google Scholar]
- Iverson RM, George DL. 2014. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470(2170): 20130819. https://doi.org/10.1098/rspa.2013.0819. [CrossRef] [Google Scholar]
- Iverson RM, Ouyang C. 2015. Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-integrated theory. Reviews of Geophysics 53(1): 27–58. https://doi.org/10.1002/2013RG000447. [CrossRef] [Google Scholar]
- Jakob M, Stein D, Ulmi M. 2012. Vulnerability of buildings to debris flow impact. Natural Hazards 60(2): 241–261. https://doi.org/10.1007/s11069-011-0007-2. [CrossRef] [Google Scholar]
- Jakob M, McDougall S, Weatherly H, Ripley N. 2013. Debris-flow simulations on Cheekye River, British Columbia. Landslides 10(6): 685–699. https://doi.org/10.1007/s10346-012-0365-1. [CrossRef] [Google Scholar]
- Jop P, Forterre Y, Pouliquen O. 2006. A constitutive law for dense granular flows. Nature 441(7094): 727–730. https://doi.org/10.1038/nature04801. [NASA ADS] [CrossRef] [Google Scholar]
- Kelfoun K, Druitt TH. 2005. Numerical modeling of the emplacement of Socompa rock avalanche, Chile. Journal of Geophysical Research 110(B12). https://doi.org/10.1029/2005JB003758. [CrossRef] [Google Scholar]
- Kjekstad O, Highland L. 2009. Economic and social impacts of landslides. In: Sassa K, Canuti P. Landslides-Disaster Risk Reduction. Sous Berlin, Heidelberg: Springer, pp. 573–587. https://doi.org/10.1007/978-3−540-69970-5_30. [CrossRef] [Google Scholar]
- Korup O, Schneider D, Huggel C, Dufresne A. 2013. Long-Runout Landslides. In: Treatise on geomorphology. T. 7. San Diego, CA: Academic Press, pp. 183–199. https://doi.org/10.1016/B978-0-12-374739-6.00164-0. [CrossRef] [Google Scholar]
- Laigle D,Coussot P. 1997. Numerical modeling of mudflows. Journal of Hydraulic Engineering 123(7): 617–623. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:7(617). [CrossRef] [Google Scholar]
- Lalubie G. 2013. Les lahars et les laves torrentielles historiques aux Antilles françaises : un risque hydro-volcano-géomorphologique majeur. Physio-Géo. Géographie physique et environnement 7(7): 83–109. https://doi.org/10.4000/physio-geo.3479. [Google Scholar]
- Luca I, Hutter K, Tai YC, Kuo CY. 2009. A hierarchy of avalanche models on arbitrary topography. Acta Mechanica 205(1–4): 121–149. https://doi.org/10.1007/s00707-009-0165-4. [CrossRef] [Google Scholar]
- Lucas A, Mangeney A, Bouchut F, Bristeau MO, Mège D. 2007. Benchmarking exercises for granular flows. The 2007 International Forum on Landslide Disaster Management. Hong Kong: Ho & Li. [Google Scholar]
- Lucas A, Mangeney A, Ampuero JP. 2014. Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nature Communications 5: 3417. https://doi.org/10.1038/ncomms4417. [CrossRef] [PubMed] [Google Scholar]
- Lusso C, Bouchut F, Ern A, Mangeney A. 2021. Explicit solutions to a free interface model for the static/flowing transition in thin granular flows. ESAIM: M2AN(55): S369– S395. https://doi.org/10.1051/m2an/2020042. [CrossRef] [EDP Sciences] [Google Scholar]
- Mangeney A, Bouchut F, Thomas N, Vilotte JP, Bristeau MO. 2007. Numerical modeling of self-channeling granular flows and of their levee-channel deposits. Journal of Geophysical Research 112(F2): F02017. https://doi.org/10.1029/2006JF000469. [CrossRef] [Google Scholar]
- Mangeney-Castelnau A, Bouchut F, Vilotte JP, Lajeunesse E, Aubertin A, Pirulli M. 2005. On the use of Saint Venant equations to simulate the spreading of a granular mass: numerical simulation of granular spreading. Journal of Geophysical Research: Solid Earth 110(B9): B09103. https://doi.org/10.1029/2004JB003161. [Google Scholar]
- Mangold N, Mangeney A, Migeon V, Ansan V, Lucas A, Baratoux D, et al. 2010. Sinuous gullies on Mars: Frequency, distribution, and implications for flow properties. Journal of Geophysical Research 115(E11): E11001. https://doi.org/10.1029/2009JE003540. [CrossRef] [Google Scholar]
- McArdell BW, Zanuttigh B, Lamberti A, Rickenmann D. 2003. Systematic comparison of debris-flow laws at the Illgraben torrent, Switzerland. In: Debris-Flow Hazards Mitigation. Mechanics, Prediction, and Assessment. Proc. of the third Int. Conf. on Debris-Flow Hazards Mitigation. Third Int. Conf. on Debris-Flow Hazards Mitigation. Davos, Switzerland: Millpress, pp. 11. [Google Scholar]
- McDougall S. 2017. 2014 Canadian Geotechnical Colloquium: Landslide runout analysis – current practice and challenges. Canadian Geotechnical Journal 54(5): 605–620. https://doi.org/10.1139/cgj-2016-0104. [CrossRef] [Google Scholar]
- McDougall S, Hungr O. 2004. A model for the analysis of rapid landslide motion across three-dimensional terrain. Canadian Geotechnical Journal 41(6): 1084–1097. https://doi.org/10.1139/t04-052. [CrossRef] [Google Scholar]
- Mergili M, Fischer JT, Krenn J, Pudasaini SP. 2017. r.avaflow v1, an advanced open source computational framework for the propagation and interaction of two-phase mass flows. Geoscientific Model Development Discussions 10: 553 –569. https://doi.org/10.5194/gmd-10-553-2017. [CrossRef] [Google Scholar]
- Mergili M, Schwarz L, Kociu A. 2019. Combining release and runout in statistical landslide susceptibility modeling. Landslides 16(11): 2151–2165. https://doi.org/10.1007/s10346-019-01222-7. [CrossRef] [Google Scholar]
- Mitchell A, McDougall S, Nolde N, Brideau MA, Whittall J, Aaron JB. 2019. Rock avalanche runout prediction using stochastic analysis of a regional dataset. Landslides 17: 777–792. https://doi.org/10.1007/s10346-019-01331-3. [Google Scholar]
- Moretti L, Mangeney A, Capdeville Y, Stutzmann E, Huggel C, Schneider D, et al. 2012. Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves. Geophysical Research Letters 39(16). https://doi.org/10.1029/2012GL052511. [CrossRef] [Google Scholar]
- Moretti L, Allstadt K, Mangeney A, Capdeville Y, Stutzmann E, Bouchut F. 2015. Numerical modeling of the Mount Meager landslide constrained by its force history derived from seismic data. Journal of Geophysical Research : Solid Earth 120(4): 2579–2599. https://doi.org/10.1002/2014JB011426. [CrossRef] [Google Scholar]
- Navarro M, Le Maître OP, Hoteit I, George DL, Mandli KT, Knio OM. 2018. Surrogate-based parameter inference in debris flow model. Computational Geosciences 22(6): 1447–1463. https://doi.org/10.1007/s10596-018-9765-1. [CrossRef] [Google Scholar]
- O’Brien JS, Julien PY, Fullerton WT. 1993. Two-dimensional water flood and mudflow simulation. Journal of hydraulic engineering 119(2): 244–261. [CrossRef] [Google Scholar]
- Ouro P, Cea L, Ramírez L, Nogueira X. 2016. An immersed boundary method for unstructured meshes in depth averaged shallow water models. International Journal for Numerical Methods in Fluids 81(11): 672–688. https://doi.org/10.1002/fld.4201. [CrossRef] [Google Scholar]
- Papathoma-Köhle M, Zischg A, Fuchs S, Glade T, Keiler M. 2015. Loss estimation for landslides in mountain areas − An integrated toolbox for vulnerability assessment and damage documentation. Environmental Modelling & Software 63: 156–169. https://doi.org/10.1016/j.envsoft.2014.10.003. [CrossRef] [Google Scholar]
- Pastor M, Quecedo M, González E, Herreros MI, Merodo JAF, Mira P. 2004. Simple approximation to bottom friction for Bingham fluid depth integrated models. Journal of Hydraulic Engineering 130(2): 149–155. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:2(149). [CrossRef] [Google Scholar]
- Pastor M, Martin Stickle M, Dutto P, Mira P, Fernández Merodo JA, Blanc T, et al. 2015. A viscoplastic approach to the behaviour of fluidized geomaterials with application to fast landslides. Continuum Mechanics and Thermodynamics 27(1–2): 21–47. https://doi.org/10.1007/s00161-013-0326-5. [CrossRef] [Google Scholar]
- Pastor M, Soga K, McDougall S, Kwan JSH. 2018a. Review of benchmarking exercise on landslide runout analysis 2018. Proceedings of the Second JTC1 Workshop on Triggering and Propagation of Rapid Flow-like Landslides. Hong Kong, pp. 65. [Google Scholar]
- Pastor M, Yague A, Stickle M, Manzanal D, Mira P. 2018b. A two-phase SPH model for debris flow propagation. International Journal for Numerical and Analytical Methods in Geomechanics 42(3): 418– 448. https://doi.org/10.1002/nag.2748. [CrossRef] [Google Scholar]
- Peruzzetto M. 2021a. Modélisation de scénarios de déstabilisation de la Falaise Samperre et de propagation des lahars. Rapport final BRGM/RP-71149-FR. Orléans, France: BRGM, pp. 88. [Google Scholar]
- Peruzzetto M. 2021b. Numerical modeling of dry and water-laden gravitational flows for quantitative hazard assessment. Université de Paris. [Google Scholar]
- Peruzzetto M, Mangeney A, Grandjean G, Levy C, Thiery Y, Rohmer J, et al. 2020. Operational estimation of landslide runout: comparison of empirical and numerical methods. Geosciences 10(11): 424. https://doi.org/10.3390/geosciences10110424. [CrossRef] [Google Scholar]
- Peruzzetto M, Mangeney A, Bouchut F, Grandjean G, Levy C, Thiery Y, et al. 2021. Topography curvature effects in thin-layer models for gravity-driven flows without bed erosion. Journal of Geophysical Research: Earth Surface 126(4): e2020JF005657. https://doi.org/10.1029/2020JF005657. [CrossRef] [Google Scholar]
- Peruzzetto M, Legendre Y, Nachbaur A, Dewez TJB, Thiery Y, Levy C, et al. 2022a. How volcanic stratigraphy constrains headscarp collapse scenarios : the Samperre cliff case study (Martinique island, Lesser Antilles). Natural Hazards and Earth System Sciences 22(12): 3973–3992. https://doi.org/10.5194/nhess-22-3973-2022. [CrossRef] [Google Scholar]
- Peruzzetto M, Levy C, Thiery Y, Grandjean G, Mangeney A, Lejeune AM, et al. 2022b. Simplified simulation of rock avalanches and subsequent debris flows with a single thin-layer model: Application to the Prêcheur river (Martinique, Lesser Antilles). Engineering Geology 296: 106457. https://doi.org/10.1016/j.enggeo.2021.106457. [CrossRef] [Google Scholar]
- Petley D. 2012. Global patterns of loss of life from landslides. Geology 40(10): 927–930. https://doi.org/10.1130/G33217.1. [CrossRef] [Google Scholar]
- Pirulli M, Mangeney A. 2008. Results of Back-Analysis of the Propagation of Rock Avalanches as a Function of the Assumed Rheology. Rock Mechanics and Rock Engineering 41(1): 59–84. https://doi.org/10.1007/s00603-007-0143-x. [CrossRef] [Google Scholar]
- Pirulli M, Bristeau MO, Mangeney A, Scavia C. 2007. The effect of the earth pressure coefficients on the runout of granular material. Environmental Modelling & Software 22(10): 1437–1454. https://doi.org/10.1016/j.envsoft.2006.06.006. [CrossRef] [Google Scholar]
- Pirulli M, Pastor M. 2012. Numerical study on the entrainment of bed material into rapid landslides. Géotechnique 62(11): 959–972. https://doi.org/10.1680/geot.10.P.074. [CrossRef] [Google Scholar]
- Pouliquen O, Forterre Y. 2002. Friction law for dense granular flows : application to the motion of a mass down a rough inclined plane. Journal of Fluid Mechanics 453. https://doi.org/10.1017/S0022112001006796. [Google Scholar]
- Pudasaini SP, Fischer JT. 2020. A mechanical model for phase separation in debris flow. International Journal of Multiphase Flow 129: 103292. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103292. [CrossRef] [Google Scholar]
- Reid ME, Coe JA, Brien DL. 2016. Forecasting inundation from debris flows that grow volumetrically during travel, with application to the Oregon Coast Range, USA. Geomorphology 273: 396–411. https://doi.org/10.1016/j.geomorph.2016.07.039. [CrossRef] [Google Scholar]
- Remaître A, Malet JP, Maquaire O, Ancey C, Locat J. 2005. Flow behaviour and runout modelling of a complex debris flow in a clayshale basin. Earth Surface Processes and Landforms 30(4): 479–488. https://doi.org/10.1002/esp.1162. [CrossRef] [Google Scholar]
- Rickenmann D. 1999. Empirical relationships for debris flows. Natural Hazards 19(1): 47–77. [CrossRef] [Google Scholar]
- Rohmer J. 2014. Dynamic sensitivity analysis of long-running landslide models through basis set expansion and meta-modelling. Natural Hazards 73(1): 5–22. https://doi.org/10.1007/s11069-012-0536-3. [CrossRef] [Google Scholar]
- Sanders BF, Schubert JE, Gallegos HA. 2008. Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling. Journal of Hydrology 362(1): 19–38. https://doi.org/10.1016/j.jhydrol.2008.08.009. [CrossRef] [Google Scholar]
- Santi PM, Hewitt K, VanDine DF, Barillas Cruz E. 2011. Debris-flow impact, vulnerability, and response. Natural Hazards 56(1): 371–402. https://doi.org/10.1007/s11069-010-9576-8. [CrossRef] [Google Scholar]
- Savage SB, Hutter K. 1989. The motion of a finite mass of granular material down a roughincline. Journal of Fluid Mechanics 199(1): 177. https://doi.org/10.1017/S0022112089000340. [CrossRef] [Google Scholar]
- Savage SB, Hutter K. 1991. The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis. Acta Mechanica 86(1): 201–223. [CrossRef] [Google Scholar]
- Scheidl C, Chiari M, Kaitna R, Müllegger M, Krawtschuk A, Zimmermann T, et al. 2013. Analysing Debris-Flow Impact Models, Based on a Small Scale Modelling Approach. Surveys in Geophysics 34(1): 121–140. https://doi.org/10.1007/s10712-012-9199-6. [CrossRef] [Google Scholar]
- Sosio R, Crosta GB, Frattini P. 2007. Field observations, rheological testing and numerical modelling of a debris-flow event. Earth Surface Processes and Landforms 32(2): 290–306. https://doi.org/10.1002/esp.1391. [CrossRef] [Google Scholar]
- Thiery Y, Terrier M, Colas B, Fressard M, Maquaire O, Grandjean G, et al. 2020. Improvement of landslide hazard assessments for regulatory zoning in France: STATE-OF-THE-ART perspectives and considerations. International Journal of Disaster Risk Reduction 47: 101562. https://doi.org/10.1016/j.ijdrr.2020.101562. [CrossRef] [Google Scholar]
- Thouret JC, Antoine S, Magill C, Ollier C. 2020. Lahars and debris flows: Characteristics and impacts. Earth-Science Reviews 201: 103003. https://doi.org/10.1016/j.earscirev.2019.103003. [CrossRef] [Google Scholar]
- Titov VV, Gonzalez FI, Bernard EN, Eble MC, Mofjeld HO, Newman JC, et al. 2005. Real-Time Tsunami Forecasting: Challenges and Solutions. Natural Hazards 35(1): 35–41. https://doi.org/10.1007/s11069-004-2403-3. [CrossRef] [Google Scholar]
- Voellmy A. 1955. Uber die Zerstorungskraft von Lawinen. Schweizerische Bauzeitung, Jahrg 73: 159–162, 212–217, 246–249, 280–285. [Google Scholar]
- Zimmermann F, McArdell BW, Rickli C, Scheidl C. 2020. 2D Runout Modelling of Hillslope Debris Flows, Based on Well-Documented Events in Switzerland. Geosciences 10(2): 70. https://doi.org/10.3390/geosciences10020070. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.