Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 177, 2023
Hommage à Pierre Bérest
Numéro d'article 1
Nombre de pages 8
DOI https://doi.org/10.1051/geotech/2024017
Publié en ligne 11 avril 2024
  • Bérest P, Blum P, Charpentier JP, et al. 2005. Very slow creep tests on rock samples. Int J Rock Mech Min Sci 42 (4): 569–576. [CrossRef] [Google Scholar]
  • Bérest P, Brouard B, Brückner D, et al. 2019. Very slow creep tests on salt samples. Rock Mech Rock Eng 52: 2917–2934. https://doi.org/10.1007/s00603-019- 01778-9 [Google Scholar]
  • Bérest P, Gharbi H, Blanco-Martín L, et al. 2023. Salt creep: transition between the low and high stress domains. Rock Mech Rock Eng 56: 8305–8316. https://doi.org/10.1007/s00603-023-03485-y [Google Scholar]
  • Blanco-Martín L, Rouabhi A, Hadj-Hassen F, et al. 2023. Creep of rock salt under a large range of deviatoric stresses. Accepted for publication in Rock Mech Rock Eng. [Google Scholar]
  • DeVries KL. 1988. Viscoplastic laws for Avery Island salt. RE/SPEC Inc., Rapid City, SD, RSI-0333, Prepared for Stone & Webster Engineering Corporation, Boston [Google Scholar]
  • Gharbi H, Bérest P, Blanco-Martín L, Brouard B. 2020. Determining upper and lower bounds for steady state strain rate during a creep test on a salt sample. Int J Rock Mech Min Sci 134: 104452. https://doi.org/10.1016/j.ijrmms.2020.104452 [CrossRef] [Google Scholar]
  • Herchen K, Popp T, Düsterloh U, et al. 2018. WEIMOS: Laboratory investigations of damage reduction and creep at small deviatoric stresses in rock salt. In Fahland, Hammer, Hansen, et al. eds. 9th Conference Mechanical Behavior of Salt (Saltmech IX), Hanover, Germany pp. 175–192. [Google Scholar]
  • Hunsche U. 1988. Measurement of creep in rock salt at small strain rates. In Reginald Hardy Jr., Langer eds. 2nd Conference Mechanical Behavior of Salt (Saltmech II), Hanover, Germany, pp. 187–196. [Google Scholar]
  • Lüdeling C, Günther RM, Hampel A, et al. 2022. WEIMOS: Creep of rock salt at low deviatoric stresses. In de Bresser, Drury, Fokker, et al. eds. 10th Conference Mechanical Behavior of Salt (Saltmech X), Utrecht, The Netherlands, pp. 130–140. [Google Scholar]
  • Paterson MS. 1987. Problems in the extrapolation of laboratory rheological data. Tectonophysics 133 (1-2): 33–43. https://doi.org/10.1016/0040-1951(87)90278-2 [CrossRef] [Google Scholar]
  • Spiers CJ, Schutjens PMTM, Brzesowsky RH, et al. 1990. Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. Geol Soc London, Spec Publ 54 (1): 215–227. https://doi.org/10.1144/GSL.SP.1990.054.01.21 [CrossRef] [Google Scholar]
  • Tijani M. 2008. Contribution à l’étude thermomécanique des cavités réalisées par lessivage dans des formations géologiques salines. Habilitation à diriger des recherches, Université Pierre et Marie Curie − Paris VI. [Google Scholar]
  • Urai JL, Spiers CJ, Zwart H, et al. 1986. Weakening of rock salt by water during long-term creep. Nature 324: 554–557. https://doi.org/10.1038/324554a0 [CrossRef] [Google Scholar]
  • Urai JL, Spiers CJ. 2007. The effect of grain boundary water on deformation mechanisms and rheology of rocksalt during long-term deformation. In Wallner M, Lux KH, Minkley W, et al. eds. 6th Conference Mechanical Behavior of Salt (Saltmech VI), Hanover, Germany, pp. 149–158. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.