Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 146, 2016
Numéro d'article 3
Nombre de pages 14
DOI https://doi.org/10.1051/geotech/2016003
Publié en ligne 15 mars 2016
  • Akkar S, Boore DM. 2009. On baseline corrections and uncertainty in response spectra for baseline variations commonly encountered in digital accelerograph records. Bull Seismol Soc Am 99: 1671– 1690. [CrossRef] [Google Scholar]
  • Bock Y, Agnew D, Fang P, et al. 1993. Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements. Nature 361: 337– 340. [CrossRef] [Google Scholar]
  • Boore DM. 2001. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake. Bull Seismol Soc Am 91: 1199– 1211. [CrossRef] [Google Scholar]
  • Boore DM, Bommer JJ. 2005. Processing of strong-motion accelerograms: needs, options and consequences. Soil Dyn Earthquake Eng 25: 93– 115. [CrossRef] [Google Scholar]
  • Dotsenko SF, Soloviev SL. 1995. On the role of residual shifts of ocean-bottom in tsunami generation underwater earthquakes. Okeanologiya 51: 25– 31. [Google Scholar]
  • Furukawa A. 2011. Relation between observed ground displacement in the near-field and ground displacement based on Seismic Deformation Method. Master thesis, Tokyo Institute of Technology. [Google Scholar]
  • Furukawa A, Inoue S, Ohmachi T. 2010a. Verification of a quantitative method to estimate coseismic displacements in near-field from strong-motion accelerographs. In: Japan Society of Civil Engineers, 2010 Annual Meeting, I-326 (en japonais). [Google Scholar]
  • Furukawa A, Ohmachi T, Inoue S. 2010b. Need to improve the Seismic Deformation Method in application to near-field earthquakes. In: Proceedings of the Second Symposium on Disaster Mitigation of Lifelines considering System Interactions, pp. 64–69. [Google Scholar]
  • Graizer VM. 2010. Strong motion recordings and residual displacements: what are we actually recording in strong motion seismology? Seism Res Lett 81: 635– 639. [CrossRef] [Google Scholar]
  • Inoue S, Murakami Y, Ohmachi T. 2007. Evaluation of the near-field ground displacements based on numerical simulation, strong motion records and GPS records. In: Proceedings of the 6th Annual Meeting of Japan Association for Earthquake Engineering, pp. 218–219 (en japonais). [Google Scholar]
  • Intergovernmental Oceanographic Commission. 2013. Tsunami glossary. Technical series, 85. [Google Scholar]
  • Iwan WD, Moser MA, Peng CY. 1985. Some observations on strong motion earthquake measurement using a digital accelerograph. Bull Seismol Soc Am 75: 1225– 1246. [Google Scholar]
  • Javelaud EH. 2013. Near-field displacement and rotation estimated by quantitative analysis in the frequency domain using zero padded strong-motion accelerograms. Doctor thesis. Tokyo Institute of Technology (http://t2r2.star.titech.ac.jp/rrws/file/CTT100691251/ATD100000413/, dernier accès le 19 janvier 2016). [Google Scholar]
  • Javelaud EH, Morikawa H. 2013. Reliable displacement response spectra at long periods in the near-field of large earthquakes. Bull Seismol Soc Am 103: 2534– 2539. [CrossRef] [Google Scholar]
  • Javelaud EH, Kubo G, Ohmachi T, Inoue S. 2005. Coseismic ground displacement due to the 2004 Niigata-ken Chuetsu earthquake, Japan. In: Proceedings of the 4th Annual Meeting of Japan Association for Earthquake Engineering, pp. 312–313. [Google Scholar]
  • Javelaud EH, Ohmachi T, Inoue S. 2006. A quantitative method to estimate the coseismic residual tilt from strong-motion records. In: Proceedings of the 30th Annual Meeting of San-daigakuin, pp. 5–6. [Google Scholar]
  • Javelaud EH, Ohmachi T, Inoue S. 2011a A quantitative approach for estimating coseismic displacements in the near field from strong-motion accelerographs. Bull Seismol Soc Am 101: 1182– 1198. [CrossRef] [Google Scholar]
  • Javelaud EH, Inoue S, Furukawa A, Ohmachi T. 2011b. Evaluation of coseismic displacements in the near-field from strong-motion seismometers. Analysis of four recent large earthquakes. In: 8th International Conference on Urban Earthquake Engineering (8CUEE), Tokyo, Japan, pp. 189–192. [Google Scholar]
  • Javelaud EH, Ohmachi T, Inoue S. 2012. Estimating small permanent rotation from strong-motion records: what is comparison with external measurements telling us? Bull Seismol Soc Am 102: 2257– 2263. [CrossRef] [Google Scholar]
  • JCOLD (Japan Commission on Large Dams). 2002. Acceleration records on dams and foundations No. 2 (CD-ROM version). [Google Scholar]
  • Japan Society of Civil Engineers. 2000. Earthquake resistant design codes in Japan. [Google Scholar]
  • Kinoshita S. 1998. Kyoshin-Net (K-Net). Seism Res Lett 69: 309– 332. [CrossRef] [Google Scholar]
  • Levin BW, Nosov MA. 2008. Physics of tsunamis. Springer, 327 p. [Google Scholar]
  • Massonnet D, Rossi M, Carmona C, et al. 1993. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364: 138– 142. [CrossRef] [Google Scholar]
  • McComb HE, Ruge AC, Neumann F. 1943. The determination of true ground motion by integration of strong-motion records: a symposium. Bull Seismol Soc Am 33: 1– 63. [Google Scholar]
  • Murakami Y. 2008. Evaluation of near field displacements. Master thesis, Tokyo Institute of Technology. [Google Scholar]
  • National Research Institute for Earth Science and Disaster Prevention, Japan (NIED). Seismograph Network Portal (http://www.seis.bosai.go.jp/seis-portal/, dernier accès le 27 août 2014). [Google Scholar]
  • NIED. 2000. Fundamentals of Strong Motion, CD version. [Google Scholar]
  • Ohmachi T, Kojima N, Murakami A, Komaba N. 2003. Near field effects of hidden seismic faulting on a concrete dam. J Nat Disaster Sci 25: 7– 15. [Google Scholar]
  • Ohtake K. 2006. Near-field earthquake displacements of the non-liquefiable ground relevant to damage to buried pipelines. Doctor thesis. Tokyo Institute of Technology. [Google Scholar]
  • Ohtake K, Ohmachi T. 2007. Near-field earthquake displacements of the non-liquefiable ground relevant to damage to buried pipelines. In: 5th AWWARF/JWWA Water System Seismic Conference. [Google Scholar]
  • Paolucci R, Rovelli A, Faccioli E, et al. 2008. On the reliability of long-period response spectral ordinates from digital accelerograms. Earthquake Eng Struct Dyn 37: 697– 710. [CrossRef] [Google Scholar]
  • Park SW, Ghasemi H, Shen J, Somerville PG, Yen WP, Yashinsky M. 2004. Simulation of the seismic performance of the Bolu Viaduct subjected to near-field ground motions. Earthquake Eng Struct Dyn 33: 1249– 1270. [CrossRef] [Google Scholar]
  • Pillet R, Virieux J. 2007. The effects of seismic rotations on inertial sensors. Geophys J Int 171: 1314– 1323. [CrossRef] [Google Scholar]
  • Trifunac MD. 1971. Zero baseline correction of strong-motion accelerograms. Bull Seismol Soc Am 61: 1201– 1211. [Google Scholar]
  • Trifunac MD, Udwadia FE, Brady AG. 1973. Analysis of errors in digitized strong-motion accelerograms. Bull Seismol Soc Am 63: 157– 187. [Google Scholar]
  • Wang GQ, Boore DM, Tang G, Zhou X. 2007. Comparisons of ground motions from colocated and closely spaced one-sample-per-second global positioning system and accelerograph recordings of the 2003 M 6.5 San Simeon, California, Earthquake in the Parkfield region. Bull Seismol Soc Am 97: 76-L 90. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.