Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 147, 2016
Numéro d'article 2
Nombre de pages 15
Section Mécanique des sols
DOI https://doi.org/10.1051/geotech/2016006
Publié en ligne 8 septembre 2016
  • Al-Tabbaa A. 1987. Permeability and stress-strain response of speswhite kaolin. Thèse de doctorat, université de Cambridge. [Google Scholar]
  • Al-Tabbaa A, Wood DM. 1989. An experimentally based bubble model for clay. In: Proc. 3rd Int. Conf. on Numerical Models in Geomechanics, Niagara Falls, pp. 91–99. [Google Scholar]
  • Antoine PC. 2010. Étude des dalles sur sols renforcés au moyen d’inclusions rigides ou non. Thèse de doctorat, faculté des sciences appliquées (Bruxelles). [Google Scholar]
  • Arwanitaki A, Triantafyllidis T. 2006. Mehrlagig mit Geogittern bewehrte Erdkörper über pfahlartigen Gründungselementen. Numerische Simulation des Verformungsverhaltens unter statischer und zyklischer Einwirkung. Bautechnik 83: 695– 707, en allemand. [CrossRef] [Google Scholar]
  • Baudouin G. 2010. Sols renforcés par inclusions rigides : modélisation physique en centrifugeuse de remblais et de dallage. Thèse de doctorat, université de LUNAM. [Google Scholar]
  • Briançon L, Dias D, Simon S. 2015. Monitoring and numerical investigation of a rigid inclusions-reinforced industrial building. Can. Geotech. J. 52: 1– 13, doi: 10.1139/cgj-2014-0262. [CrossRef] [Google Scholar]
  • Chen YM, Cao WP, Chen RP. 2008. An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments. Geotext. Geomembr. 26: 164– 174. [CrossRef] [Google Scholar]
  • Chevalier B, Villard P, Combe G. 2011. Investigation of load-transfer mechanisms in geotechnical earth structures with thin fill platforms reinforced by rigid inclusions. Int. J. Geomech. 11: 239– 250. [CrossRef] [Google Scholar]
  • Combe G, Richefeu V. 2013. Tracker: a Particle Image Tracking (PIT) technique dedicated to nonsmooth motions involved in granular packings. In: Powders and Grains 2013, July 8–12, UNSW, Sydney, Australia. [Google Scholar]
  • De Pasquale A. 2011. Cyclic behaviour of geotechnical structures involving granular mats. Mémoire du Master International, université J.-Fourier (Grenoble), 41 p. [Google Scholar]
  • Demerdash MA. 1996. An experimental study of piled embankments incorporating geosynthetic basal reinforcement. Thèse de doctorat, University of Newcastle-upon-Tyne. [Google Scholar]
  • Dinh AQ. 2010. Étude sur modèle physique des mécanismes de transfert de charge dans les sols renforcés par inclusions rigides. Application au dimensionnement. Thèse de doctorat, École des Ponts (Paris). [Google Scholar]
  • Ellis EA, Aslam R. 2009a. Arching in piled embankments: comparison of centrifuge tests and predictive methods. Part 1 of 2. Ground Eng. 42: 34– 38. [Google Scholar]
  • Ellis EA, Aslam R. 2009b. Arching in piled embankments: comparison of centrifuge tests and predictive methods. Part 2 of 2. Ground Eng. 42: 28– 31. [Google Scholar]
  • Eskisar T, Otani J, Hironaka J. 2012. Visualization of soil arching on reinforced embankment with rigid pile foundation using X-ray CT. Geotext. Geomembr. 32: 44– 54. [CrossRef] [Google Scholar]
  • Han J, Gabr MA. 2002. Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil. J. Geotech. Geoenviron. Eng. 128: 44– 53. [CrossRef] [Google Scholar]
  • Han J, Bhandari A. 2009. Evaluation of geogrid-reinforced pile-supported embankments under cyclic loading using discrete element method. In: ASCE Conf. Advances in Ground Improvement (GSP 188), Proc. of the 2009 US – China Workshop on Ground Improvement Technologies, 10 p. [Google Scholar]
  • Han J, Bhandari A, Wang F. 2011. DEM analysis of stresses and deformations of geogrid-reinforced embankments over piles. Int. J. Geomech. 12: 340– 350. [CrossRef] [Google Scholar]
  • Heitz C. 2006. Bodengewölbe unter ruhender und nichtruhender Belastung bei Berücksichtigung von Bewehrungseinlagen aus Geogittern. Schriftenreihe Geotechnik, Universität Kassel. Heft 19. Kassel: Kassel University Press GmbH, 197 p., en allemand. [Google Scholar]
  • Heitz C, Luking J, Kempfert HG. 2008. Geosynthetic reinforced and pile supported embankments under static and cyclic loading. In: Proc. of the 4th European Geosynthetics Conf Euro-Geo4, Edinburgh (UK), paper No. 215. [Google Scholar]
  • Hewlett WJ, Randolph MF. 1988. Analysis of piled embankment. Ground Eng. 21: 12– 18. [Google Scholar]
  • Horgan G, Sarsby R. 2002. The arching effect of soils over voids and piles incorporating geosynthetic reinforcement. In: Proc. 7th International Conference on Geosynthetics. Swets and Zeitlinger, Nice, pp. 373–378. [Google Scholar]
  • Houda M, Jenck O, Emeriault F. 2016. Physical evidence of the effect of vertical cyclic loading on soil improvement by rigid piles: a small-scale laboratory experiment using Digital Image Correlation. Acta Geotech. 11 (2): 325– 346, doi: 10.1007/s11440-014-0350-z [CrossRef] [Google Scholar]
  • Huang J, Han J. 2009. 3D coupled mechanical and hydraulic modeling of a geosynthetic reinforced deep mixed column-supported embankment. Geotext. Geomembr. 27: 272– 280. [CrossRef] [Google Scholar]
  • Itasca Consulting Group, Inc. 2009. FLAC3D – Fast Lagrangian Analysis of Continua in Three-Dimensions, Version 4.0, User's guide. Minneapolis: Itasca. [Google Scholar]
  • Jenck O. 2005. Le renforcement des sols compressibles par inclusions rigides verticales. Modélisation physique et numérique. Thèse de doctorat, INSA Lyon. [Google Scholar]
  • Jenck O, Dias D, Kastner R. 2007. Two-dimensional physical and numerical modeling of a pile-supported earth platform over soft soil. J. Geotech. Geoenviron. Eng. 133: 295– 305. [CrossRef] [Google Scholar]
  • Jenck O, Dias D, Kastner R. 2009. Three-dimensional numerical modelling of a piled embankment. Int. J. Geomech. 9 (3): 102– 112, doi: 10.1061/(ASCE)1532-3641(2009)9:3(102). [CrossRef] [Google Scholar]
  • Jenck O, Combe G, Emeriault F, De Pasquale A. 2014. Arching effect in a granular soil subjected to monotonic or cyclic loading: kinematic analysis. In: 8th International Conference on Physical Modelling in Geotechnics, 14–17 January 2014, Perth, Australia, edited by Christophe Gaudin and David White, pp. 1243–1249. doi:10.1201/b16200-179. [Google Scholar]
  • Kempfert HG, Stadel M, Zaeske D. 1997. Berechnung von geokunststoffbewehrten Tragschichten über Pfahlelementen. Bautechnik 74: 818– 825. [Google Scholar]
  • Laurent Y, Dias D, Simon B, Kastner R. 2003. A 3D finite difference analysis of embnkments over pile-reinforced soft soil. In: Proc. of the Int. Workshop on Geotechnics of Soft Soils – Theory and Practice, 17–19 September 2003, Noordwijkerhout, Pays-Bas. Essen: Verlag Glückauf, pp. 271–276. [Google Scholar]
  • Low BK, Tang SK, Choa V. 1994. Arching in piled embankments. J. Geotech. Geoenviron. Eng. 120: 1917– 1938. [CrossRef] [Google Scholar]
  • Magnan JP. 1994. Methods to reduce the settlement of embankments on soft clay: a review. In: Speciality Conference on the Foundations and Embankments Deformations, ASCE (Geotechnical Special Publication No. 40), pp. 77–90. [Google Scholar]
  • Morgon M. 2010. Renforcement de sol par inclusions rigides : étude du mécanisme de transfert de charge dans le matelas de répartition. Mémoire du diplôme d’ingénieur, Polytech Clermont-Ferrand, 120 p. [Google Scholar]
  • Okyay US, Briançon L. 2012. Monitoring and numerical investigations of rigid inclusion reinforced concrete water tank. In: 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 28–30 June 2012, Near East University, Nicosia, North Cyprus. [Google Scholar]
  • Okyay US, Dias D. 2010. Use of lime and cement treated soils as pile supported load transfer platform. Eng. Geol. 114: 34– 44. [CrossRef] [Google Scholar]
  • Okyay US, Dias D, Thorel L, Rault G. 2014. Centrifuge modeling of a pile-supported granular earth-platform. J. Geotech. Geoenviron. Eng. 140 (2): 04013015-1– 04013015-12, doi: 10.1061/(ASCE)GT.1943-5606.0001004. [CrossRef] [Google Scholar]
  • Rault G, Thorel L. 2009. Étude du transfert de charge par cisaillement. Essais de réception par cisaillement. Dispositif de plateau mobile. Rapport du PN ASIRI no 3.09.3.14., 21 p. [Google Scholar]
  • Santruckova H. 2012. Inertial loading of soil reinforced by rigid inclusions to an upper flexible layer. Thèse de doctorat, université de Grenoble. [Google Scholar]
  • Thai Son Q, Hassen G, de Buhan P. 2010. Seismic stability analysis of piled embankments: a multiphase approach. Int. J. Numer. Anal. Methods Geomech. 34: 91– 110. [Google Scholar]
  • Van Eekelen JM, Van MA, Bezuijen A. 2007. The Kyoto Road, a full-scale test. Measurements and calculations. In: 14th European Conference on Soil Mechanics and Geotechnical Engineering, Madrid, Millpress, Rotterdam, pp. 1533–1538. [Google Scholar]
  • Van Eekelen SJM, Bezuijen A, Van Tol AF. 2012a. Model experiments on piled embankments. Part I. Geotext. Geomembr. 32: 69– 81. [CrossRef] [Google Scholar]
  • Van Eekelen SJM, Bezuijen A, Van Tol AF. 2012b. Model experiments on piled embankments. Part II. Geotext. Geomembr. 32: 82– 94. [CrossRef] [Google Scholar]
  • Villard P, Grange S. 2013. Influence des cycles de chargement/déchargement sur les mécanismes de transfert de charges dans les matelas granulaires. Rapport du laboratoire 3SR pour la FNTP. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.