Free Access
Issue
Rev. Fr. Geotech.
Number 147, 2016
Article Number 2
Number of page(s) 15
Section Mécanique des sols
DOI https://doi.org/10.1051/geotech/2016006
Published online 08 September 2016
  • Al-Tabbaa A. 1987. Permeability and stress-strain response of speswhite kaolin. Thèse de doctorat, université de Cambridge. [Google Scholar]
  • Al-Tabbaa A, Wood DM. 1989. An experimentally based bubble model for clay. In: Proc. 3rd Int. Conf. on Numerical Models in Geomechanics, Niagara Falls, pp. 91–99. [Google Scholar]
  • Antoine PC. 2010. Étude des dalles sur sols renforcés au moyen d’inclusions rigides ou non. Thèse de doctorat, faculté des sciences appliquées (Bruxelles). [Google Scholar]
  • Arwanitaki A, Triantafyllidis T. 2006. Mehrlagig mit Geogittern bewehrte Erdkörper über pfahlartigen Gründungselementen. Numerische Simulation des Verformungsverhaltens unter statischer und zyklischer Einwirkung. Bautechnik 83: 695– 707, en allemand. [CrossRef] [Google Scholar]
  • Baudouin G. 2010. Sols renforcés par inclusions rigides : modélisation physique en centrifugeuse de remblais et de dallage. Thèse de doctorat, université de LUNAM. [Google Scholar]
  • Briançon L, Dias D, Simon S. 2015. Monitoring and numerical investigation of a rigid inclusions-reinforced industrial building. Can. Geotech. J. 52: 1– 13, doi: 10.1139/cgj-2014-0262. [CrossRef] [Google Scholar]
  • Chen YM, Cao WP, Chen RP. 2008. An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments. Geotext. Geomembr. 26: 164– 174. [Google Scholar]
  • Chevalier B, Villard P, Combe G. 2011. Investigation of load-transfer mechanisms in geotechnical earth structures with thin fill platforms reinforced by rigid inclusions. Int. J. Geomech. 11: 239– 250. [CrossRef] [Google Scholar]
  • Combe G, Richefeu V. 2013. Tracker: a Particle Image Tracking (PIT) technique dedicated to nonsmooth motions involved in granular packings. In: Powders and Grains 2013, July 8–12, UNSW, Sydney, Australia. [Google Scholar]
  • De Pasquale A. 2011. Cyclic behaviour of geotechnical structures involving granular mats. Mémoire du Master International, université J.-Fourier (Grenoble), 41 p. [Google Scholar]
  • Demerdash MA. 1996. An experimental study of piled embankments incorporating geosynthetic basal reinforcement. Thèse de doctorat, University of Newcastle-upon-Tyne. [Google Scholar]
  • Dinh AQ. 2010. Étude sur modèle physique des mécanismes de transfert de charge dans les sols renforcés par inclusions rigides. Application au dimensionnement. Thèse de doctorat, École des Ponts (Paris). [Google Scholar]
  • Ellis EA, Aslam R. 2009a. Arching in piled embankments: comparison of centrifuge tests and predictive methods. Part 1 of 2. Ground Eng. 42: 34– 38. [Google Scholar]
  • Ellis EA, Aslam R. 2009b. Arching in piled embankments: comparison of centrifuge tests and predictive methods. Part 2 of 2. Ground Eng. 42: 28– 31. [Google Scholar]
  • Eskisar T, Otani J, Hironaka J. 2012. Visualization of soil arching on reinforced embankment with rigid pile foundation using X-ray CT. Geotext. Geomembr. 32: 44– 54. [CrossRef] [Google Scholar]
  • Han J, Gabr MA. 2002. Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil. J. Geotech. Geoenviron. Eng. 128: 44– 53. [CrossRef] [Google Scholar]
  • Han J, Bhandari A. 2009. Evaluation of geogrid-reinforced pile-supported embankments under cyclic loading using discrete element method. In: ASCE Conf. Advances in Ground Improvement (GSP 188), Proc. of the 2009 US – China Workshop on Ground Improvement Technologies, 10 p. [Google Scholar]
  • Han J, Bhandari A, Wang F. 2011. DEM analysis of stresses and deformations of geogrid-reinforced embankments over piles. Int. J. Geomech. 12: 340– 350. [Google Scholar]
  • Heitz C. 2006. Bodengewölbe unter ruhender und nichtruhender Belastung bei Berücksichtigung von Bewehrungseinlagen aus Geogittern. Schriftenreihe Geotechnik, Universität Kassel. Heft 19. Kassel: Kassel University Press GmbH, 197 p., en allemand. [Google Scholar]
  • Heitz C, Luking J, Kempfert HG. 2008. Geosynthetic reinforced and pile supported embankments under static and cyclic loading. In: Proc. of the 4th European Geosynthetics Conf Euro-Geo4, Edinburgh (UK), paper No. 215. [Google Scholar]
  • Hewlett WJ, Randolph MF. 1988. Analysis of piled embankment. Ground Eng. 21: 12– 18. [Google Scholar]
  • Horgan G, Sarsby R. 2002. The arching effect of soils over voids and piles incorporating geosynthetic reinforcement. In: Proc. 7th International Conference on Geosynthetics. Swets and Zeitlinger, Nice, pp. 373–378. [Google Scholar]
  • Houda M, Jenck O, Emeriault F. 2016. Physical evidence of the effect of vertical cyclic loading on soil improvement by rigid piles: a small-scale laboratory experiment using Digital Image Correlation. Acta Geotech. 11 (2): 325– 346, doi: 10.1007/s11440-014-0350-z [CrossRef] [Google Scholar]
  • Huang J, Han J. 2009. 3D coupled mechanical and hydraulic modeling of a geosynthetic reinforced deep mixed column-supported embankment. Geotext. Geomembr. 27: 272– 280. [CrossRef] [Google Scholar]
  • Itasca Consulting Group, Inc. 2009. FLAC3D – Fast Lagrangian Analysis of Continua in Three-Dimensions, Version 4.0, User's guide. Minneapolis: Itasca. [Google Scholar]
  • Jenck O. 2005. Le renforcement des sols compressibles par inclusions rigides verticales. Modélisation physique et numérique. Thèse de doctorat, INSA Lyon. [Google Scholar]
  • Jenck O, Dias D, Kastner R. 2007. Two-dimensional physical and numerical modeling of a pile-supported earth platform over soft soil. J. Geotech. Geoenviron. Eng. 133: 295– 305. [CrossRef] [Google Scholar]
  • Jenck O, Dias D, Kastner R. 2009. Three-dimensional numerical modelling of a piled embankment. Int. J. Geomech. 9 (3): 102– 112, doi: 10.1061/(ASCE)1532-3641(2009)9:3(102). [CrossRef] [Google Scholar]
  • Jenck O, Combe G, Emeriault F, De Pasquale A. 2014. Arching effect in a granular soil subjected to monotonic or cyclic loading: kinematic analysis. In: 8th International Conference on Physical Modelling in Geotechnics, 14–17 January 2014, Perth, Australia, edited by Christophe Gaudin and David White, pp. 1243–1249. doi:10.1201/b16200-179. [Google Scholar]
  • Kempfert HG, Stadel M, Zaeske D. 1997. Berechnung von geokunststoffbewehrten Tragschichten über Pfahlelementen. Bautechnik 74: 818– 825. [Google Scholar]
  • Laurent Y, Dias D, Simon B, Kastner R. 2003. A 3D finite difference analysis of embnkments over pile-reinforced soft soil. In: Proc. of the Int. Workshop on Geotechnics of Soft Soils – Theory and Practice, 17–19 September 2003, Noordwijkerhout, Pays-Bas. Essen: Verlag Glückauf, pp. 271–276. [Google Scholar]
  • Low BK, Tang SK, Choa V. 1994. Arching in piled embankments. J. Geotech. Geoenviron. Eng. 120: 1917– 1938. [Google Scholar]
  • Magnan JP. 1994. Methods to reduce the settlement of embankments on soft clay: a review. In: Speciality Conference on the Foundations and Embankments Deformations, ASCE (Geotechnical Special Publication No. 40), pp. 77–90. [Google Scholar]
  • Morgon M. 2010. Renforcement de sol par inclusions rigides : étude du mécanisme de transfert de charge dans le matelas de répartition. Mémoire du diplôme d’ingénieur, Polytech Clermont-Ferrand, 120 p. [Google Scholar]
  • Okyay US, Briançon L. 2012. Monitoring and numerical investigations of rigid inclusion reinforced concrete water tank. In: 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 28–30 June 2012, Near East University, Nicosia, North Cyprus. [Google Scholar]
  • Okyay US, Dias D. 2010. Use of lime and cement treated soils as pile supported load transfer platform. Eng. Geol. 114: 34– 44. [CrossRef] [Google Scholar]
  • Okyay US, Dias D, Thorel L, Rault G. 2014. Centrifuge modeling of a pile-supported granular earth-platform. J. Geotech. Geoenviron. Eng. 140 (2): 04013015-1– 04013015-12, doi: 10.1061/(ASCE)GT.1943-5606.0001004. [CrossRef] [Google Scholar]
  • Rault G, Thorel L. 2009. Étude du transfert de charge par cisaillement. Essais de réception par cisaillement. Dispositif de plateau mobile. Rapport du PN ASIRI no 3.09.3.14., 21 p. [Google Scholar]
  • Santruckova H. 2012. Inertial loading of soil reinforced by rigid inclusions to an upper flexible layer. Thèse de doctorat, université de Grenoble. [Google Scholar]
  • Thai Son Q, Hassen G, de Buhan P. 2010. Seismic stability analysis of piled embankments: a multiphase approach. Int. J. Numer. Anal. Methods Geomech. 34: 91– 110. [Google Scholar]
  • Van Eekelen JM, Van MA, Bezuijen A. 2007. The Kyoto Road, a full-scale test. Measurements and calculations. In: 14th European Conference on Soil Mechanics and Geotechnical Engineering, Madrid, Millpress, Rotterdam, pp. 1533–1538. [Google Scholar]
  • Van Eekelen SJM, Bezuijen A, Van Tol AF. 2012a. Model experiments on piled embankments. Part I. Geotext. Geomembr. 32: 69– 81. [Google Scholar]
  • Van Eekelen SJM, Bezuijen A, Van Tol AF. 2012b. Model experiments on piled embankments. Part II. Geotext. Geomembr. 32: 82– 94. [Google Scholar]
  • Villard P, Grange S. 2013. Influence des cycles de chargement/déchargement sur les mécanismes de transfert de charges dans les matelas granulaires. Rapport du laboratoire 3SR pour la FNTP. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.