Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 148, 2016
Numéro d'article 1
Nombre de pages 13
Section Mécanique des sols
DOI https://doi.org/10.1051/geotech/2016009
Publié en ligne 21 octobre 2016
  • American Society for Testing and Materials (ASTM). 1996. ASTP standard D3999-11, standard test methods for the determination of the modulus and damping properties of soils using the cyclic triaxial apparatus. In: Annual book of ASTM standards. ASTM International, 14 p. [Google Scholar]
  • Association française de normalisation (AFNOR). 1994a. Essais à l’appareil triaxial de révolution généralités définitions. Norme française NF P 94-070, octobre 1994, 21 p. [Google Scholar]
  • Association française de normalisation (AFNOR). 1994b. Essais à l’appareil triaxial de révolution. Appareillage. Préparation des éprouvettes. Essais UU non consolidé non drainé. Essai CU + u consolidé non drainé avec mesure de la pression interstitielle. Essai CD consolidé drainé. Norme française NF P 94-074, octobre 1994, 36 p. [Google Scholar]
  • Bui MT, Clayton CRI, Priest JA. 2007. Effects of particule shape on Gmax of geomaterials. In: Proc. 4th International Conference on Earthquake Geotechnical Engineering (Thessaloniki, Greece), paper No. 1536. [Google Scholar]
  • Darendeli MB. 2001. Development of a new family of normalized modulus reduction and material damping curves. PhD dissertation, University of Texas at Austin (Austin, Texas). [Google Scholar]
  • Dyvik R, Madshus C. 1986. Lab measurements of Gmax using bender elements. Advances in the art of testing soils under cyclic conditions. In: Proc. ASCE Convention (Detroit, Michigan), pp. 186–196. [Google Scholar]
  • El Mohtar CS, Drnevich V, Santagata M, Bobet A. 2013. Combined resonant column and cyclic triaxial tests for measuring undrained shear modulus reduction of sand with plastic fines. Geotech Test J 36: 1–8. [CrossRef] [Google Scholar]
  • Guerreiro P, Kontoe S, Taborda D. 2012. Comparative study of stiffness reduction and damping curves. In: Proc. 15th World Conference on Earthquake Engineering (Lisbon, Portugal). [Google Scholar]
  • Hardin BO, Drnevich VP. 1972a. Shear modulus and damping in soils: measurement and parameter effects. Terzaghi lecture. J Soil Mech Found Div 98: 603–624. [Google Scholar]
  • Hardin BO, Drnevich VP. 1972b. Shear modulus and damping in soil: design equations and curves. J Soil Mech Found Div 98: 667–692. [Google Scholar]
  • Ishibashi I, Zhang XJ. 1993. Unified dynamic shear moduli and damping ratios of sand and clay. Soils Found 33: 182–191. [CrossRef] [Google Scholar]
  • Iwasaki T, Tatsuoka F. 1977. Effects of grain size and grading on dynamic shear moduli of sands. Soils Found 17: 19–35. [CrossRef] [Google Scholar]
  • Iwasaki T, Tatsuoka F, Takagi Y. 1978. Shear moduli of sands under cyclic torsional shear loading. Soils Found 18: 39–56. [CrossRef] [Google Scholar]
  • Kokusho T. 1980. Cyclic triaxial test of dynamic soil properties for wide strain range. Soils Found 20: 45–60. [CrossRef] [Google Scholar]
  • Kokusho T, Yoshida Y, Esashi Y. 1982. Dynamic properties of soft clay for wide strain range. Soils Found 22: 1–18. [CrossRef] [Google Scholar]
  • Kumar SS, Krishna AM, Dey A. 2015. Cyclic response of sand using stress controlled cyclic triaxial tests. In: Proc. 50th India Geotech. Conf. (Pune, Maharashtra, India). [Google Scholar]
  • Liao T, Massoudi N, McHood M, Stokoe KH, Jung MJ, Menq FY. 2013. Normalized shear modulus of compacted gravel. In: Proc. 18th Int. Conf. on Soil Mech. and Geotech. Engrg. (Paris, France). [Google Scholar]
  • Matasovic N, Vucetic M. 1992. A pore pressure model for cyclic straining of clay. Soils Found 32: 156–173. [CrossRef] [Google Scholar]
  • Matasovic N, Vucetic M. 1995. Generalized cyclic-degradation pore-pressure generation model for clays. J Geotech Eng 121: 33–42. [CrossRef] [Google Scholar]
  • Nogami Y, Murono Y, Morikawa H. 2012. Nonlinear hysteresis model taking into account S-shaped hysteresis loop and its standard parameters. In: Proc. 15th World Conference on Earthquake Engineering (Lisbon, Portugal). [Google Scholar]
  • Rollins KM, Evans M, Diehl N, Daily W. 1998. Shear modulus and damping relationships for gravels. J Geotech Geoenviron Eng 124: 396–405. [CrossRef] [Google Scholar]
  • Seed HB, Idriss IM. 1970. Soil moduli and damping factors for dynamic response analyses. Report EERC 70-10. Berkeley: Earthquake Engineering Research Centre, University of California. [Google Scholar]
  • Seed HB, Wong RT, Idriss IM, Tokimatsu K. 1986. Moduli and damping factors for dynamic analysis of cohesionless soils. J Geotech Eng 112: 1016–1032. [CrossRef] [Google Scholar]
  • Shirley DJ, Hampton LD. 1978. Shear-wave measurements in laboratory sediments. J Acoust Soc Am 63: 607–613. [CrossRef] [Google Scholar]
  • Stokoe KH, Darendeli MB, Andrus RD, Brown LT. 1999. Dynamic soil properties: laboratory, field and correlation studies. In: Proc. 2nd Int. Conf. on Earthquake Geotechnical Engineering (Lisbon, Portugal), Vol. 3, pp. 811–845. [Google Scholar]
  • Stokoe KH, Darendeli MB, Gilbert RB, Menq FY, Choi WK. 2004. Development of a new family of normalized modulus reduction and material damping curves. In: NSF/PEER Int. Workshop on Uncertainties in Nonlinear Soil Properties and their Impact on Modeling Dynamic Soil Response, Univ. of California (Berkeley, California). [Google Scholar]
  • Sun JI, Goleskorkhi R, Seed HB. 1988. Dynamic moduli and damping ratios for cohesive soils. In: Rep. No. UCB/EERC-88/15, Univ. of California at Berkeley (Berkeley, California). [Google Scholar]
  • Vardanega PJ, Bolton MD. 2013. Stiffness of clays and silts: normalizing shear modulus and shear strain. J Geotech Geoenviron Eng 139: 1575–1589. [CrossRef] [Google Scholar]
  • Vucetic M, Dobry R. 1991. Effect of soil plasticity on cyclic response. J Geotech Eng 117: 89–107. [CrossRef] [Google Scholar]
  • Vucetic M, Lanzo G, Doroudian M. 1998. Damping at small strains in cyclic simple shear test. J Geotech Geoenviron Eng 124: 585–594. [CrossRef] [Google Scholar]
  • Zen K, Umehara Y, Hamada K. 1978. Laboratory tests and in situ seismic survey on vibratory shear modulus of clayey soils with various plasticities. In: Proc. 5th Japanese Earthquake Engrg. Symp. (Japan), pp. 721–728. [Google Scholar]
  • Zhang J, Andrus RD, Juang CH. 2005. Normalized shear modulus and material damping ratio relationships. J Geotech Geoenviron Eng 131: 453–464. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.