Free Access
Rev. Fr. Geotech.
Number 148, 2016
Article Number 1
Number of page(s) 13
Section Mécanique des sols
Published online 21 October 2016
  • American Society for Testing and Materials (ASTM). 1996. ASTP standard D3999-11, standard test methods for the determination of the modulus and damping properties of soils using the cyclic triaxial apparatus. In: Annual book of ASTM standards. ASTM International, 14 p. [Google Scholar]
  • Association française de normalisation (AFNOR). 1994a. Essais à l’appareil triaxial de révolution généralités définitions. Norme française NF P 94-070, octobre 1994, 21 p. [Google Scholar]
  • Association française de normalisation (AFNOR). 1994b. Essais à l’appareil triaxial de révolution. Appareillage. Préparation des éprouvettes. Essais UU non consolidé non drainé. Essai CU + u consolidé non drainé avec mesure de la pression interstitielle. Essai CD consolidé drainé. Norme française NF P 94-074, octobre 1994, 36 p. [Google Scholar]
  • Bui MT, Clayton CRI, Priest JA. 2007. Effects of particule shape on Gmax of geomaterials. In: Proc. 4th International Conference on Earthquake Geotechnical Engineering (Thessaloniki, Greece), paper No. 1536. [Google Scholar]
  • Darendeli MB. 2001. Development of a new family of normalized modulus reduction and material damping curves. PhD dissertation, University of Texas at Austin (Austin, Texas). [Google Scholar]
  • Dyvik R, Madshus C. 1986. Lab measurements of Gmax using bender elements. Advances in the art of testing soils under cyclic conditions. In: Proc. ASCE Convention (Detroit, Michigan), pp. 186–196. [Google Scholar]
  • El Mohtar CS, Drnevich V, Santagata M, Bobet A. 2013. Combined resonant column and cyclic triaxial tests for measuring undrained shear modulus reduction of sand with plastic fines. Geotech Test J 36: 1–8. [CrossRef] [Google Scholar]
  • Guerreiro P, Kontoe S, Taborda D. 2012. Comparative study of stiffness reduction and damping curves. In: Proc. 15th World Conference on Earthquake Engineering (Lisbon, Portugal). [Google Scholar]
  • Hardin BO, Drnevich VP. 1972a. Shear modulus and damping in soils: measurement and parameter effects. Terzaghi lecture. J Soil Mech Found Div 98: 603–624. [Google Scholar]
  • Hardin BO, Drnevich VP. 1972b. Shear modulus and damping in soil: design equations and curves. J Soil Mech Found Div 98: 667–692. [Google Scholar]
  • Ishibashi I, Zhang XJ. 1993. Unified dynamic shear moduli and damping ratios of sand and clay. Soils Found 33: 182–191. [Google Scholar]
  • Iwasaki T, Tatsuoka F. 1977. Effects of grain size and grading on dynamic shear moduli of sands. Soils Found 17: 19–35. [CrossRef] [Google Scholar]
  • Iwasaki T, Tatsuoka F, Takagi Y. 1978. Shear moduli of sands under cyclic torsional shear loading. Soils Found 18: 39–56. [Google Scholar]
  • Kokusho T. 1980. Cyclic triaxial test of dynamic soil properties for wide strain range. Soils Found 20: 45–60. [CrossRef] [Google Scholar]
  • Kokusho T, Yoshida Y, Esashi Y. 1982. Dynamic properties of soft clay for wide strain range. Soils Found 22: 1–18. [Google Scholar]
  • Kumar SS, Krishna AM, Dey A. 2015. Cyclic response of sand using stress controlled cyclic triaxial tests. In: Proc. 50th India Geotech. Conf. (Pune, Maharashtra, India). [Google Scholar]
  • Liao T, Massoudi N, McHood M, Stokoe KH, Jung MJ, Menq FY. 2013. Normalized shear modulus of compacted gravel. In: Proc. 18th Int. Conf. on Soil Mech. and Geotech. Engrg. (Paris, France). [Google Scholar]
  • Matasovic N, Vucetic M. 1992. A pore pressure model for cyclic straining of clay. Soils Found 32: 156–173. [CrossRef] [Google Scholar]
  • Matasovic N, Vucetic M. 1995. Generalized cyclic-degradation pore-pressure generation model for clays. J Geotech Eng 121: 33–42. [CrossRef] [Google Scholar]
  • Nogami Y, Murono Y, Morikawa H. 2012. Nonlinear hysteresis model taking into account S-shaped hysteresis loop and its standard parameters. In: Proc. 15th World Conference on Earthquake Engineering (Lisbon, Portugal). [Google Scholar]
  • Rollins KM, Evans M, Diehl N, Daily W. 1998. Shear modulus and damping relationships for gravels. J Geotech Geoenviron Eng 124: 396–405. [CrossRef] [Google Scholar]
  • Seed HB, Idriss IM. 1970. Soil moduli and damping factors for dynamic response analyses. Report EERC 70-10. Berkeley: Earthquake Engineering Research Centre, University of California. [Google Scholar]
  • Seed HB, Wong RT, Idriss IM, Tokimatsu K. 1986. Moduli and damping factors for dynamic analysis of cohesionless soils. J Geotech Eng 112: 1016–1032. [Google Scholar]
  • Shirley DJ, Hampton LD. 1978. Shear-wave measurements in laboratory sediments. J Acoust Soc Am 63: 607–613. [Google Scholar]
  • Stokoe KH, Darendeli MB, Andrus RD, Brown LT. 1999. Dynamic soil properties: laboratory, field and correlation studies. In: Proc. 2nd Int. Conf. on Earthquake Geotechnical Engineering (Lisbon, Portugal), Vol. 3, pp. 811–845. [Google Scholar]
  • Stokoe KH, Darendeli MB, Gilbert RB, Menq FY, Choi WK. 2004. Development of a new family of normalized modulus reduction and material damping curves. In: NSF/PEER Int. Workshop on Uncertainties in Nonlinear Soil Properties and their Impact on Modeling Dynamic Soil Response, Univ. of California (Berkeley, California). [Google Scholar]
  • Sun JI, Goleskorkhi R, Seed HB. 1988. Dynamic moduli and damping ratios for cohesive soils. In: Rep. No. UCB/EERC-88/15, Univ. of California at Berkeley (Berkeley, California). [Google Scholar]
  • Vardanega PJ, Bolton MD. 2013. Stiffness of clays and silts: normalizing shear modulus and shear strain. J Geotech Geoenviron Eng 139: 1575–1589. [Google Scholar]
  • Vucetic M, Dobry R. 1991. Effect of soil plasticity on cyclic response. J Geotech Eng 117: 89–107. [Google Scholar]
  • Vucetic M, Lanzo G, Doroudian M. 1998. Damping at small strains in cyclic simple shear test. J Geotech Geoenviron Eng 124: 585–594. [Google Scholar]
  • Zen K, Umehara Y, Hamada K. 1978. Laboratory tests and in situ seismic survey on vibratory shear modulus of clayey soils with various plasticities. In: Proc. 5th Japanese Earthquake Engrg. Symp. (Japan), pp. 721–728. [Google Scholar]
  • Zhang J, Andrus RD, Juang CH. 2005. Normalized shear modulus and material damping ratio relationships. J Geotech Geoenviron Eng 131: 453–464. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.