Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 159, 2019
Numéro d'article 4
Nombre de pages 20
DOI https://doi.org/10.1051/geotech/2019017
Publié en ligne 15 janvier 2020
  • Abbaszadeh S, Houston SL, Zapata CE. 2016. Effect of desiccation cracking on the swell and swell pressure of expansive clay. Proceedings of the Geotechnical and Structural Engineering Congress, Phoenix, US, pp. 2054–2065. [Google Scholar]
  • AFNOR (Association française de normalisation). 1995. Sols : reconnaissance et essais – Essai de gonflement à l’œdomètre – Détermination des déformations par chargement de plusieurs éprouvettes. Norme XPP94-091, décembre 1995, 13 p. [Google Scholar]
  • ASTM (American Society for Testing and Materials). 2008. Standard D4546-08. 2008. Standard test methods for one-dimensional swell or collapse of cohesive soils. West Conshohocken, PA: ASTM International. [Google Scholar]
  • Attom MF, Barakat S. 2000. Investigation of three methods for evaluating swelling pressure of soils. Environ Eng Geosci VI(3): 293–299. [CrossRef] [Google Scholar]
  • Barden L, Mc Gown A, Collins K. 1973. The collapse mechanism in partly saturated soil. Eng Geol 7(1): 49–60. [CrossRef] [Google Scholar]
  • Basma AA. 1993. Prediction of expansion degree for natural compacted clays. Geotech Test J 16(6): 542–542. [CrossRef] [Google Scholar]
  • Basma AA, Al-Homoud AS, Husein A. 1995. Laboratory assessment of swelling pressure of expansive soils. Appl Clay Sci 9(5): 355–368. https://doi.org/10.1016/0169-1317(94)00032-L. [CrossRef] [Google Scholar]
  • Berche V, Jeanjean P, Rossigny P, Ferber V, Quibel A. 2009. Réutilisation d’argiles très plastiques en corps de remblais routiers: expérimentations sur le chantier de l’Autoroute A34 (Charleville-Réthel). Bull Lab Ponts Chaussées 274: 31–46. [Google Scholar]
  • Brackley JJA. 1973. Swell pressure and free swell in compacted clay. Proceedings of 3rd International Conference on Expansive Soils, Haifa, 1, pp. 169–176. [Google Scholar]
  • Cerato AB, Miller GA, Hajjat JA. 2009. Influence of clod-size and structure on wetting-induced volume change of compacted soil. J Geotech Geoenviron Eng 135(11): 1620–1628. [CrossRef] [Google Scholar]
  • Dudley JH. 1970. Review of collapsile soils. J Soil Mech Found Div, ASCE 96(3): 925–945. [Google Scholar]
  • Feng M, Gan KM, Fredlund DG. 1998. A laboratory study of swelling pressure using various test methods. Proceedings of the 2nd International Conference on Unsaturated Soils, Beijing, China, pp. 350–355. [Google Scholar]
  • Ferber V. 2005. Sensibilité des sols fins compactés à l’humidification. Apport d’un modèle de microstructure. Thèse de doctorat. École Centrale de Nantes et Université de Nantes, 285 p. [Google Scholar]
  • Ferber V, Auriol JC, Cui YJ, Magnan JP. 2008. Comportement des sols fins compactés à l’humidification. Apport d’un modèle de microstructure. Rev Fr Geotech 122: 13–24. [CrossRef] [Google Scholar]
  • Fityus SG, Cameron DA, Walsh PF. 2005. The shrink swell test. Geotech Test J 28(1): 92–101. [Google Scholar]
  • Islam T, Kodikara J. 2016. Interpretation of the loading-wetting behaviour of compacted soils within the “MPK” framework. Part I: Static compaction. Can Geotech J 53(5): 783–805. https://doi.org/10.1139/cgj-2014-0316. [CrossRef] [Google Scholar]
  • ISRM (International Society for Rock Mechanics). 1989. Suggested methods for laboratory testing of argillaceous swelling rock. Int J Rock Mech Min Sci Geomech Abstr 26(5): 415–426. [CrossRef] [Google Scholar]
  • ISSMFE (International Society for Soil Mechanics and Foundation Engineering). 1989. Draft standard for evaluation of swelling potential of expansive soils in laboratory. Report of Technical Committee on expansive soils (TC6). Publié dans: Rev Fr Geotech 56: 18–22. [Google Scholar]
  • Jennings JE, Knight K. 1957. The prediction of total heave from the double œdometer test. Trans S Afr Inst Civ Eng 7(9): 13–19. Proceedings of the Symposium on Expansive Clays, Johannesburg, South Africa, pp. 13–19. [Google Scholar]
  • Jennings JE, Firth RA, Ralph TK, Nagar N. 1973. An improved method for predicting heave using the œdometer test. Proceedings of International Conference of Expansive Soils, Haifa, Israel, pp. 149–154. [Google Scholar]
  • Kayabali K, Demir S. 2011. Measurement of swelling pressure: Direct method versus indirect methods. Rev Can Geotech 48(3): 354–364. https://doi.org/10.1139/T10-074. [CrossRef] [Google Scholar]
  • Kodikara J. 2012. New framework for volumetric constitutive behaviour of compacted unsaturated soils. Can Geotech J 49(11): 1227–1243. [CrossRef] [Google Scholar]
  • Kodikara J, Islam T, Rajeev P. 2016. Interpretation of the loading–wetting behaviour of compacted soils within the “MPK” framework. Part II: Dynamic compaction. Can Geotech J 53(5): 806–827. [CrossRef] [Google Scholar]
  • Komornik J, David A. 1969. Prediction of swelling potential of compacted clays. J Soil Mech Found Div, ASCE 95(1): 209–225. [Google Scholar]
  • Ladd CC. 1960, Mechanism of swelling by compacted clay. Highw Res Board Bull 245: 10–26. [Google Scholar]
  • Lambe TW. 1958. The engineering behaviour of compacted clay. J Soil Mech Found Div, ASCE 84(2): 1–35. [Google Scholar]
  • Lawton EC, Fragaszy RJ, Hardcastle JH. 1989. Collapse of compacted clayey sand. J Geotech Eng 115(9): 1252–1267. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:9(1252). [Google Scholar]
  • Lawton EC, Fragaszy RJ, Hetherington MD. 1992. Review of wetting-induced collapse in compacted soil. J Geotech Eng 118(9): 1376–1394. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:9(1376). [CrossRef] [Google Scholar]
  • LCPC-SETRA. 2000. Guide technique pour les terrassements routiers (GTR). Réalisation des remblais et des couches de forme. Juillet 2000, 2e Édition. Fascicule I, Principes généraux, 98 p, Fascicule II, Annexes techniques, 102 p. [Google Scholar]
  • Leong EC, Widiastuti S, Rahardjo H. 2013. Estimating wetting-induced settlement of compacted soils using œdometer test. Geotech Eng J SEAGS AGSSEA 44(1): 26–33. [Google Scholar]
  • Li P, Vanapalli S, Li T. 2016. Review of collapse triggering mechanism of collapsible soils due to wetting. J Rock Mech Geotech Eng 8: 256–274. [CrossRef] [Google Scholar]
  • Lutenegger AJ, Saber RT. 1988. Determination of collapse potential of soils. Geotech Test J 11(3): 173–178. [CrossRef] [Google Scholar]
  • Masin D, Khalili N. 2016. Swelling phenomena and effective stress in compacted expansive clays. Can Geotech J 53(1): 134–147. [Google Scholar]
  • Mieussens C. 1993. Détermination de la sensibilité des sols aux variations de teneur en eau en laboratoire. Essais à l’œdomètre sur les sols compactés. Projet de méthode LPC, Rapport du LRPC de Toulouse, 12 p. [Google Scholar]
  • Nagaraj HB, Munnas MM, Sirdharan A. 2009. Critical evaluation of determining swelling pressure by swell-load method and constant volume method. Geotech Test J 32(4): 305–314. [Google Scholar]
  • Nayak NV, Christensen RW. 1971. Swelling characteristics of compacted, expansive soils. Clays Clay Miner 19: 251–261. [CrossRef] [Google Scholar]
  • Noorany I. 1992. Stress ratio effects on collapse of compacted clayey sand. Discussion de l’article de Lawton, Gragaszy et Hardcastle (1989). J Geotech Eng 118(9): 1472–1474. [CrossRef] [Google Scholar]
  • Rosenbalm DC. 2013. Volume change behavior of expansive soils due to wetting and drying cycles. Thèse, Arizona State University, August 2013, 319 p. [Google Scholar]
  • Schreiner HD, Burland JB. 1991. A comparison of the three swell test procedures. Proceedings of 10th Regional Conference for Africa on Soil Mechanics and Foundation Engineering. Maseru, Lesotho, pp. 259–266. [Google Scholar]
  • Seed HB, Woodward RJ Jr, Lundgren R. 1962. Prediction of swelling potential for compacted clays. J Soil Mech Found Div, ASCE 88(3): 53–87. [Google Scholar]
  • Serratrice JF. 1995a. Comportement d’une argile compactée. Bull Liaison Lab Ponts Chaussées 200: 13–24. [Google Scholar]
  • Serratrice JF. 1995b. Comportement d’une craie compactée. Actes du Colloque « Colloquium Mundanum, Craies et schistes », Bruxelles, pp. 1.1.71–1.1.80. [Google Scholar]
  • Serratrice JF. 2007. Retrait-gonflement des sols argileux et des marnes. Rev Fr Geotech 120–121: 1–14. [Google Scholar]
  • Serratrice JF. 2013. Comportement d’un limon compacté. Bull Lab Ponts Chaussées 280–281: 105–122. [Google Scholar]
  • Serratrice JF. 2018. Apport expérimental de la méthode de compactage statique des sols au laboratoire. Rev Fr Geotech 156: 1. https://doi.org/10.1051/geotech/2019001. [CrossRef] [Google Scholar]
  • Serratrice JF, Soyez B. 1996. Les essais de gonflement. Bull Lab Ponts Chaussées 204: 65–85. [Google Scholar]
  • Serratrice JF, Calissano H, Batilliot L. 2019. Les essais de sensibilité appliqués aux sols compactés. Rev Fr Geotech. https://doi.org/10.1051/geotech/2019016. [Google Scholar]
  • Singhal S, Houston S, Houston WN. 2011. Effects of testing procedures on the laboratory determination of swell pressure of expansive soils. Geotech Test J 34(5): 476–488. [Google Scholar]
  • Soundara B, Robinson RG. 2009. Influence of test method on swelling pressure of compacted clay. Int J Geotech Eng 3: 439–444. https://doi.org/10.3328/IJGE2009.03.03.439-444. [CrossRef] [Google Scholar]
  • Sridharan A, Rao AS, Sivapullaiah PV. 1986. Swelling pressure of clays. Geotech Test J 9(1): 24–31. [CrossRef] [Google Scholar]
  • Sridharan A, Gurtug Y. 2004. Swelling behaviour of compacted fine-grained soils. Eng Geol 72: 9–18. [CrossRef] [Google Scholar]
  • Sun D, Sheng D, Xu Y. 2007. Collapse behaviour of unsaturated compacted soil with different initial densities. Rev Can Geotech 44(6): 673–686. https://doi.org/10.1139/t07-023. [CrossRef] [Google Scholar]
  • Thompson RW, Perko HA, Raethamel WD. 2006. Comparison of constant volume swell pressure and œdometer load-back pressure. Proceedings of 4th International Conference of Unsaturated Soils. Carefree, Arizona, pp. 1382–1393. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.