Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 163, 2020
Chutes de bloc, Risques Rocheux et Ouvrages de Protection (C2ROP)
Numéro d'article 7
Nombre de pages 9
DOI https://doi.org/10.1051/geotech/2020016
Publié en ligne 2 octobre 2020
  • Agliardi F, Crosta GB, Frattini P. 2009. Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques. Nat Hazards Earth Syst Sci 9(4): 1059–1073. [CrossRef] [Google Scholar]
  • Arnalds P, Jónasson K, Sigurõsson S. 2004. Avalanche hazard zoning in Iceland based on individual risk. Ann Glaciol 38: 285–290. [CrossRef] [Google Scholar]
  • Assali P. 2015. Modélisation géostructurale 3D de parois rocheuses par lasergrammétrie et photogrammétrie terrestres en milieu ferroviaire. Bull Eng Geol Environ 74(4): 1255–1265. [CrossRef] [Google Scholar]
  • Aven T. The reconceptualization of risk. In: Routledge handbook of risk studies. Routledge, 2016, pp. 76–90. [Google Scholar]
  • Badoux A, Andres N, Techel F, Hegg C. 2016. Natural hazard fatalities in switzerland from 1946 to 2015. Nat Hazards Earth Syst Sci 16(12): 2747–2768. [CrossRef] [Google Scholar]
  • Beniston M, Farinotti D, Stoffel M, et al. 2018. The european mountain cryosphere: a review of its current state, trends, and future challenges. Cryosphere 12(2): 759–794. [CrossRef] [Google Scholar]
  • Bernier J. 2003. Décisions et comportement des décideurs face au risque hydrologique. Hydrol Sci J 48(3): 301–316. [CrossRef] [Google Scholar]
  • Coles S. 2001. An introduction to statistical modeling of extreme values. In: Springer series in statistics. London: Springer. [CrossRef] [Google Scholar]
  • Corominas J, Copons R, Moya J, Vilaplana JM, Altimir J, Amigó J. 2005. Quantitative assessment of the residual risk in a rockfall protected area. Landslides 2(4): 343–357. [CrossRef] [Google Scholar]
  • Corominas J, Matas G, Ruiz-Carulla R. 2019. Quantitative analysis of risk from fragmental rockfalls. Landslides 16(1): 5–21. [CrossRef] [Google Scholar]
  • Corominas J, van Westen C, Frattini P, et al. 2014. Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73: 209–263. [Google Scholar]
  • Cruden D, Varnes DJ. 1996. Landslide types and processes. Special Report − National Research Council, Transportation Research Board 247: 36–75. [Google Scholar]
  • De Biagi V, Napoli ML, Barbero M, Peila D. 2017. Estimation of the return period of rockfall blocks according to their size. Nat Hazards Earth Syst Sci 17(1): 103–113. [CrossRef] [Google Scholar]
  • Dorren L. 2012. Rockyfor3d (v5.1) revealed − Transparent description of the complete 3d rockfall model. EcorisQ paper: 32. [Google Scholar]
  • Eckert N, Keylock C, Bertrand D, et al. 2012. Quantitative risk and optimal design approaches in the snow avalanche field: review and extensions. Cold Reg Sci Technol 79–80: 1–19. [CrossRef] [Google Scholar]
  • Eckert N, Naaim M, Giacona F, et al. 2018. Repenser les fondements du zonage règlementaire des risques en montagne « récurrents ». La Houille Blanche (2): 38–67. [CrossRef] [EDP Sciences] [Google Scholar]
  • Eckert N, Parent E, Faug T, Naaim M. 2008. Optimal design under uncertainty of a passive defense structure against snow avalanches: from a general Bayesian framework to a simple analytical model. Nat Hazards Earth Syst Sci 8(5): 1067–1081. [CrossRef] [Google Scholar]
  • Eckert N, Parent E, Faug T, Naaim M. 2009. Bayesian optimal design of an avalanche dam using a multivariate numerical avalanche model. Stoch Environ Res Risk Assess 23(8): 1123–1141. [CrossRef] [Google Scholar]
  • Embrechts P, Klüppelberg C, Mikosch T. 1997. Modelling extremal events. Berlin, Heidelberg: Springer. [CrossRef] [Google Scholar]
  • Emmer S, Kratz M, Tasche D. 2015. What is the best risk measure in practice? A comparison of standard measures. J Risk 18(2): 31–60. [CrossRef] [Google Scholar]
  • Farvacque M. 2020. Évaluation quantitative du risque rocheux : de la formalisation à l’application sur les linéaires et les zones urbanisées. Ph.D. thesis. Université Grenoble Alpes (ComUE). [Google Scholar]
  • Farvacque M, Lopez-Saez J, Corona C, Toe D, Bourrier F, Eckert N. 2019a. How is rockfall risk impacted by land-use and land-cover changes? insights from the french alps. Glob Planet Change 174: 138–152. [CrossRef] [Google Scholar]
  • Farvacque M, Lopez-Saez J, Corona C, Toe D, Bourrier F, Eckert N. 2019b. Quantitative risk assessment in a rockfall-prone area: the case study of the Crolles municipality (Massif de la Chartreuse, French Alps). Geomorphol Relief Process Environ 25(1): 7–19. [CrossRef] [Google Scholar]
  • Favier P, Eckert N, Bertrand D, Naaim M. 2014. Sensitivity of avalanche risk to vulnerability relations. Cold Reg Sci Technol 108: 163–177. [CrossRef] [Google Scholar]
  • Favier P, Eckert N, Faug T, Bertrand D, Naaim M. 2016. Avalanche risk evaluation and protective dam optimal design using extreme value statistics. J Glaciol 62(234): 725–749. [CrossRef] [Google Scholar]
  • Ferrari F, Giacomini A, Thoeni K. 2016. Qualitative rockfall hazard assessment: a comprehensive review of current practices. Rock Mech Rock Eng 49(7): 2865–2922. [CrossRef] [Google Scholar]
  • García-Hernández C, Ruiz-Fernández J, Sánchez-Posada C, Pereira S, Oliva M, Vieira G. 2017. Reforestation and land use change as drivers for a decrease of avalanche damage in mid-latitude mountains (NW Spain). Glob Planet Change 153: 35–50. [CrossRef] [Google Scholar]
  • Guerra M, Centeno M. 2012. Are quantile risk measures suitable for risk-transfer decisions? Insur Math Econ 50(3): 446–461. [CrossRef] [Google Scholar]
  • Hantz D. 2010. Évaluation quantitative de l’aléa d’éboulement en pied de falaise. In: Journées nationales de géotechnique et de géologie de l’ingénieur, Grenoble. [Google Scholar]
  • Hantz D. 2011. Quantitative assessment of diffuse rock fall hazard along a cliff foot. Nat Hazards Earth Syst Sci 11(5): 1303–1309. [CrossRef] [Google Scholar]
  • Haque U, Blum P, da Silva PF, et al. 2016. Fatal landslides in europe. Landslides 13(6): 1545–1554. [CrossRef] [Google Scholar]
  • Hungr O, Evans S, Hazzard J. 1999. Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern british columbia. Can Geotech J 36(2): 224–238. [CrossRef] [Google Scholar]
  • Jonkman S, van Gelder P, Vrijling J. 2003. An overview of quantitative risk measures for loss of life and economic damage. J Hazard Mater 99(1): 1–30. [CrossRef] [Google Scholar]
  • Lopez-Saez J, Corona C, Eckert N, Stoffel M, Bourrier F, Berger F. 2016. Impacts of land-use and land-cover changes on rockfall propagation: insights from the Grenoble conurbation. Sci Total Environ 547: 345–355. [CrossRef] [Google Scholar]
  • Loye A, Jaboyedoff M, Pedrazzini A. 2009. Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis. Nat Hazards Earth Syst Sci 9(5): 1643–1653. [CrossRef] [Google Scholar]
  • Mavrouli O, Corominas J. 2010. Rockfall vulnerability assessment for reinforced concrete buildings. Nat Hazards Earth Syst Sci 10(10): 2055–2066. [CrossRef] [Google Scholar]
  • McNeil AJ, Frey R, Embrechts P. Quantitative risk management: concepts, techniques and tools. In: Princeton series in finance. Princeton, NJ: Princeton University Press, 2015, revised edition. OCLC: ocn894625411. [Google Scholar]
  • Michoud C, Derron MH, Horton P, et al. 2012. Rockfall hazard and risk assessments along roads at a regional scale: example in Swiss Alps. Nat Hazards Earth Syst Sci 12(3): 615–629. [CrossRef] [Google Scholar]
  • Moos C, Fehlmann M, Trappmann D, Stoffel M, Dorren L. 2017. Integrating the mitigating effect of forests into quantitative rockfall risk analysis − Two case studies in Switzerland. Int J Disaster Risk Reduct 32: 55–74. [Google Scholar]
  • Renn O. 2008a. Concepts of risk: an interdisciplinary review − part 2: integrative approaches. GAIA Ecol Perspect Sci Soc 17(2): 196–204. [Google Scholar]
  • Renn O. 2008b. Concepts of risk: an interdisciplinary review part 1: disciplinary risk concepts. GAIA Ecol Perspect Sci Soc 17(1): 50–66. [Google Scholar]
  • United Nations International Strategy for Disaster Reduction. 2019. Global assessment report on disaster risk reduction 2019. Global Assessment Report on Disaster Risk Reduction (GAR). Geneva: UN. [CrossRef] [Google Scholar]
  • Varnes D. 1978. Slope movement types and processes. In: Schuster RL, Krizek RJ, eds. Special Report 176. − Landslides: analysis and control, Transp. Res. Board. Washington, DC: National Research Council, pp. 11–33. [Google Scholar]
  • Zheng K, Albert LA. 2019. A robust approach for mitigating risks in cyber supply chains: a robust approach for mitigating risks in cyber supply chains. Risk Anal 39(9). [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.