Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 166, 2021
Modélisation Physique en Géotechnique - Partie 1
Numéro d'article 4
Nombre de pages 10
DOI https://doi.org/10.1051/geotech/2021005
Publié en ligne 22 février 2021
  • Arshad MI, Tehrani FS, Prezzi M, Salgado R. 2014. Experimental study of cone penetration in silica sand using digital image correlation. Geotechnique 64(7): 551–569. DOI: 10.1680/geot.13.P.179. [Google Scholar]
  • Bekki H, Tali B, Canou J, Dupla JC, Bouafia A. 2016. Influence of the cyclic loading of very large number of cycles on the pile capacity. J Appl Eng Sci Technol 2(2): 51–55. [Google Scholar]
  • Been K, Crooks J, Becker D, Jefferies M. 1986. The cone penetration state parameter test in sands: Part I: Interpretation. Geotechnique 36(2): 239–249. DOI: 10.1680/geot.1986.36.2.239. [Google Scholar]
  • Boulon M, Foray P. 1986. Physical and numerical simulation of lateral shaft friction along offshore piles in sand. In: Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling, Technip, Paris, France, pp. 127–147. [Google Scholar]
  • Butlanska J, Arroyo M, Gens A, O’Sullivan C. 2014. Multi-scale analysis of cone penetration test (CPT) in a virtual calibration chamber. Can Geotech J 51(1): 51–66. DOI: 10.1139/cgj-2012-0476. [Google Scholar]
  • Chong M. 1988. Density changes of sand on cone penetration resistance. In: Proceedings of the First International Symposium on Penetration Testing ISOPT-1, Orlando, pp. 707–714. [Google Scholar]
  • Ciantia MO, O’Sullivan C, Jardine RJ. 2019. Pile penetration in crushable soils: Insights from micromechanical modelling. In: Proceedings of the XVII ECSMGE-2019: Geotechnical Engineering Foundation of the Future International Society for Soil Mechanics and Geotechnical Engineering. DOI: 10.32075/17ECSMGE-2019-1111. [Google Scholar]
  • Doreau-Malioche J, Combe G, Viggiani G, Toni JB. 2018. Shaft friction changes for cyclically loaded displacement piles: An X-ray investigation. Geotech Lett 8(1): 66–72. DOI: 10.1680/jgele.17.00141. [Google Scholar]
  • Emam S, Canou J, Corfdir A, Dupla JC, Roux J. 2006. Elaboration et comportement mécanique de matériaux granulaires solides modèles : expériences et simulations numériques. In: Cazacliu BJR, ed. Rhéologie des pâtes et des matériaux granulaires, volume SI12 of Études et Recherches des Laboratoires des Ponts et Chaussées. Paris : Presses du Laboratoire Central des Ponts et Chaussées. [Google Scholar]
  • Fioravante V. 2002. On the shaft friction modelling of non displacement piles in sand. Soils Found 42(2): 23–33. DOI: 10.3208/sandf.42.2_23. [Google Scholar]
  • Foray P. 1991. Scale and boundary effects on calibration chamber pile tests. In: Huang AB, ed. Proceedings of the 1st International Symposium On Calibration Chamber Testing, Potsdam, New York, NY, USA, Elsevier, pp. 147–160. [Google Scholar]
  • Hebeler GL, Martinez A, Frost JD. 2016. Shear zone evolution of granular soils in contact with conventional and textured CPT friction sleeves. KSCE J Civil Eng 20(4): 1267–1282. DOI: 10.1007/s12205-015-0767-6. [Google Scholar]
  • Jiang MJ, Yu HS, Harris D. 2006. Discrete element modelling of deep penetration in granular soils. Int J Numer Anal Methods Geomech 30(4): 335–361. DOI: 10.1002/nag.473. [Google Scholar]
  • Khalili MH, Roux J, Pereira J, Brisard S, Bornert M. 2017. Numerical study of one-dimensional compression of granular materials. I. Stress-strain behavior, microstructure, and irreversibility. Phys Rev E 95(3): 032907. DOI: 10.1103/PhysRevE.95.032907. [Google Scholar]
  • Lee J, Prezzi M, Salgado R. 2011. Experimental investigation of the combined load response of model piles driven in sand. Geotech Test J 34(6): 653–667. DOI: 10.1520/GTJ103269. [Google Scholar]
  • Lobo-Guerrero S, Vallejo LE. 2007. Influence of pile shape and pile interaction on the crushable behavior of granular materials around driven piles: DEM analyses. Granular Matter 9(3-4): 241–250. DOI: 10.1007/s10035-007-0037-3. [Google Scholar]
  • Paniagua P, Fonseca J, Gylland A, Nordal S. 2018. Investigation of the change in soil fabric during cone penetration in silt using 2D measurements. Acta Geotech 13: 135–148. DOI: 10.1007/s11440-017-0559-8. [Google Scholar]
  • Parkin A, Lunne T. 1982. Boundary effects in the laboratory calibration of a cone penetrometer in sand. In: Proceedings of the 2nd European Symposium on Penetration Testing, Amsterdam, The Netherlands, CRC Press, vol. 2, pp. 761–768. [Google Scholar]
  • Peterson RW. 1988. Laboratory investigation of the penetration resistance of fine cohesionless materials. In: Proceedings of the 1st international Symposium on Penetration Testing, Orlando, FL, USA, pp. 875–880. Rotterdam, The Netherlands: Balkema. [Google Scholar]
  • Salgado R, Mitchel JK, Jamiolkowski M. 1998. Calibration chamber size effects on penetration resistance in sand. J Geotech Geoenviron Eng 124(9): 878–888. DOI: 10.1061/(ASCE)1090-0241(1998)124:9(878). [Google Scholar]
  • Schnaid F, Houlsby G. 1991. An assessment of chamber size effects in the calibration of in situ tests in sand. Geotechnique 41(3): 437–445. [Google Scholar]
  • Silva M. 2014. Experimental study of ageing and axial cyclic loading effect on shaft friction along driven piles in sand. PhD thesis, Université de Grenoble, Grenoble, France. [Google Scholar]
  • Silva M, Combe G. 2014. Sand displacement field analysis during pile installation using X-ray tomography and digital image correlation. In: Proceedings of the International Symposium on Geomechanics from Micro to Macro, Cambridge, UK. Leiden, The Netherlands: CRC Press, vol. 1, pp. 1599–1603. [Google Scholar]
  • Silva M, Combe G, Foray PY, Flin F, Lesaffre B. 2013. Postmortem analysis of sand grain crushing from pile interface using X-ray tomography. In: Proceedings of the Powders and Grains 2013, Sydney, Australia, UNSW, vol. 1542, 297 p. [Google Scholar]
  • Tehrani FS, Han F, Salgado R, Prezzi M, Tovar RD, Castro AG. 2016. Effect of surface roughness on the shaft resistance of non-displacement piles embedded in sand. Geotechnique 66(5): 386–400. DOI: 10.1680/jgeot.15.P.007. [Google Scholar]
  • Tsuha CHC, Foray PY, Jardine RJ, Yang ZX, Silva M, Rimoy S. 2012. Behaviour of displacement piles in sand under cyclic axial loading. Soils Found 52(3): 393–410. DOI: 10.1016/j.sandf.2012.05.002. [Google Scholar]
  • Tudisco E, Andò E, Cailletaud R, Hall SA. 2017. TomoWarp2: A local digital volume correlation code. SoftwareX 6: 267–270. DOI: 10.1016/j.softx.2017.10.002. [CrossRef] [Google Scholar]
  • White DJ, Bolton MD. 2002. Observing friction fatigue on a jacked pile. In: Springman SM, ed. Constitutive and Centrifuge Modeling: Two Extremes. Rotterdam, The Netherlands: Balkema, pp. 347–354. [Google Scholar]
  • White DJ, Bolton MD. 2004. Displacement and strain paths during plane-strain model pile installation in sand. Geotechnique 54(6): 375–397. DOI: 10.1680/geot.2004.54.6.375. [Google Scholar]
  • Wiebicke M, Andò E, Viggiani G, Herle I. 2015. Towards the measurement of fabric in granular materials with x-ray tomography. In: Proceedings of the 6th International Symposium on Deformation Characteristics of Geomaterials, Buenos Aires, Argentine. [Google Scholar]
  • Yang ZX, Jardine RJ, Zhu BT, Foray P, Tsuha CHC. 2010. Sand grain crushing and interface shearing during displacement pile installation in sand. Geotechnique 60(6): 469–482. DOI: 10.1680/geot.2010.60.6.469. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.