Free Access
Issue |
Rev. Fr. Geotech.
Number 166, 2021
Modélisation Physique en Géotechnique - Partie 1
|
|
---|---|---|
Article Number | 4 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/geotech/2021005 | |
Published online | 22 February 2021 |
- Arshad MI, Tehrani FS, Prezzi M, Salgado R. 2014. Experimental study of cone penetration in silica sand using digital image correlation. Geotechnique 64(7): 551–569. DOI: 10.1680/geot.13.P.179. [Google Scholar]
- Bekki H, Tali B, Canou J, Dupla JC, Bouafia A. 2016. Influence of the cyclic loading of very large number of cycles on the pile capacity. J Appl Eng Sci Technol 2(2): 51–55. [Google Scholar]
- Been K, Crooks J, Becker D, Jefferies M. 1986. The cone penetration state parameter test in sands: Part I: Interpretation. Geotechnique 36(2): 239–249. DOI: 10.1680/geot.1986.36.2.239. [Google Scholar]
- Boulon M, Foray P. 1986. Physical and numerical simulation of lateral shaft friction along offshore piles in sand. In: Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling, Technip, Paris, France, pp. 127–147. [Google Scholar]
- Butlanska J, Arroyo M, Gens A, O’Sullivan C. 2014. Multi-scale analysis of cone penetration test (CPT) in a virtual calibration chamber. Can Geotech J 51(1): 51–66. DOI: 10.1139/cgj-2012-0476. [Google Scholar]
- Chong M. 1988. Density changes of sand on cone penetration resistance. In: Proceedings of the First International Symposium on Penetration Testing ISOPT-1, Orlando, pp. 707–714. [Google Scholar]
- Ciantia MO, O’Sullivan C, Jardine RJ. 2019. Pile penetration in crushable soils: Insights from micromechanical modelling. In: Proceedings of the XVII ECSMGE-2019: Geotechnical Engineering Foundation of the Future International Society for Soil Mechanics and Geotechnical Engineering. DOI: 10.32075/17ECSMGE-2019-1111. [Google Scholar]
- Doreau-Malioche J, Combe G, Viggiani G, Toni JB. 2018. Shaft friction changes for cyclically loaded displacement piles: An X-ray investigation. Geotech Lett 8(1): 66–72. DOI: 10.1680/jgele.17.00141. [Google Scholar]
- Emam S, Canou J, Corfdir A, Dupla JC, Roux J. 2006. Elaboration et comportement mécanique de matériaux granulaires solides modèles : expériences et simulations numériques. In: Cazacliu BJR, ed. Rhéologie des pâtes et des matériaux granulaires, volume SI12 of Études et Recherches des Laboratoires des Ponts et Chaussées. Paris : Presses du Laboratoire Central des Ponts et Chaussées. [Google Scholar]
- Fioravante V. 2002. On the shaft friction modelling of non displacement piles in sand. Soils Found 42(2): 23–33. DOI: 10.3208/sandf.42.2_23. [Google Scholar]
- Foray P. 1991. Scale and boundary effects on calibration chamber pile tests. In: Huang AB, ed. Proceedings of the 1st International Symposium On Calibration Chamber Testing, Potsdam, New York, NY, USA, Elsevier, pp. 147–160. [Google Scholar]
- Hebeler GL, Martinez A, Frost JD. 2016. Shear zone evolution of granular soils in contact with conventional and textured CPT friction sleeves. KSCE J Civil Eng 20(4): 1267–1282. DOI: 10.1007/s12205-015-0767-6. [Google Scholar]
- Jiang MJ, Yu HS, Harris D. 2006. Discrete element modelling of deep penetration in granular soils. Int J Numer Anal Methods Geomech 30(4): 335–361. DOI: 10.1002/nag.473. [Google Scholar]
- Khalili MH, Roux J, Pereira J, Brisard S, Bornert M. 2017. Numerical study of one-dimensional compression of granular materials. I. Stress-strain behavior, microstructure, and irreversibility. Phys Rev E 95(3): 032907. DOI: 10.1103/PhysRevE.95.032907. [Google Scholar]
- Lee J, Prezzi M, Salgado R. 2011. Experimental investigation of the combined load response of model piles driven in sand. Geotech Test J 34(6): 653–667. DOI: 10.1520/GTJ103269. [Google Scholar]
- Lobo-Guerrero S, Vallejo LE. 2007. Influence of pile shape and pile interaction on the crushable behavior of granular materials around driven piles: DEM analyses. Granular Matter 9(3-4): 241–250. DOI: 10.1007/s10035-007-0037-3. [Google Scholar]
- Paniagua P, Fonseca J, Gylland A, Nordal S. 2018. Investigation of the change in soil fabric during cone penetration in silt using 2D measurements. Acta Geotech 13: 135–148. DOI: 10.1007/s11440-017-0559-8. [Google Scholar]
- Parkin A, Lunne T. 1982. Boundary effects in the laboratory calibration of a cone penetrometer in sand. In: Proceedings of the 2nd European Symposium on Penetration Testing, Amsterdam, The Netherlands, CRC Press, vol. 2, pp. 761–768. [Google Scholar]
- Peterson RW. 1988. Laboratory investigation of the penetration resistance of fine cohesionless materials. In: Proceedings of the 1st international Symposium on Penetration Testing, Orlando, FL, USA, pp. 875–880. Rotterdam, The Netherlands: Balkema. [Google Scholar]
- Salgado R, Mitchel JK, Jamiolkowski M. 1998. Calibration chamber size effects on penetration resistance in sand. J Geotech Geoenviron Eng 124(9): 878–888. DOI: 10.1061/(ASCE)1090-0241(1998)124:9(878). [Google Scholar]
- Schnaid F, Houlsby G. 1991. An assessment of chamber size effects in the calibration of in situ tests in sand. Geotechnique 41(3): 437–445. [Google Scholar]
- Silva M. 2014. Experimental study of ageing and axial cyclic loading effect on shaft friction along driven piles in sand. PhD thesis, Université de Grenoble, Grenoble, France. [Google Scholar]
- Silva M, Combe G. 2014. Sand displacement field analysis during pile installation using X-ray tomography and digital image correlation. In: Proceedings of the International Symposium on Geomechanics from Micro to Macro, Cambridge, UK. Leiden, The Netherlands: CRC Press, vol. 1, pp. 1599–1603. [Google Scholar]
- Silva M, Combe G, Foray PY, Flin F, Lesaffre B. 2013. Postmortem analysis of sand grain crushing from pile interface using X-ray tomography. In: Proceedings of the Powders and Grains 2013, Sydney, Australia, UNSW, vol. 1542, 297 p. [Google Scholar]
- Tehrani FS, Han F, Salgado R, Prezzi M, Tovar RD, Castro AG. 2016. Effect of surface roughness on the shaft resistance of non-displacement piles embedded in sand. Geotechnique 66(5): 386–400. DOI: 10.1680/jgeot.15.P.007. [Google Scholar]
- Tsuha CHC, Foray PY, Jardine RJ, Yang ZX, Silva M, Rimoy S. 2012. Behaviour of displacement piles in sand under cyclic axial loading. Soils Found 52(3): 393–410. DOI: 10.1016/j.sandf.2012.05.002. [Google Scholar]
- Tudisco E, Andò E, Cailletaud R, Hall SA. 2017. TomoWarp2: A local digital volume correlation code. SoftwareX 6: 267–270. DOI: 10.1016/j.softx.2017.10.002. [CrossRef] [Google Scholar]
- White DJ, Bolton MD. 2002. Observing friction fatigue on a jacked pile. In: Springman SM, ed. Constitutive and Centrifuge Modeling: Two Extremes. Rotterdam, The Netherlands: Balkema, pp. 347–354. [Google Scholar]
- White DJ, Bolton MD. 2004. Displacement and strain paths during plane-strain model pile installation in sand. Geotechnique 54(6): 375–397. DOI: 10.1680/geot.2004.54.6.375. [Google Scholar]
- Wiebicke M, Andò E, Viggiani G, Herle I. 2015. Towards the measurement of fabric in granular materials with x-ray tomography. In: Proceedings of the 6th International Symposium on Deformation Characteristics of Geomaterials, Buenos Aires, Argentine. [Google Scholar]
- Yang ZX, Jardine RJ, Zhu BT, Foray P, Tsuha CHC. 2010. Sand grain crushing and interface shearing during displacement pile installation in sand. Geotechnique 60(6): 469–482. DOI: 10.1680/geot.2010.60.6.469. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.