Free Access
Issue
Rev. Fr. Geotech.
Number 166, 2021
Modélisation Physique en Géotechnique - Partie 1
Article Number 3
Number of page(s) 9
DOI https://doi.org/10.1051/geotech/2021004
Published online 22 February 2021
  • AFNOR. 1999. Essai statique de pieu sous un effort axial. NF P 94-150, pp. 1–28. [Google Scholar]
  • Bourne-Webb PJ, Amatya B, Soga K, et al. 2009. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Geotechnique 59: 237–248. DOI: 10.1680/geot.2009.59.3.237. [Google Scholar]
  • Di Donna A, Laloui L. 2015. Numerical analysis of the geotechnical behaviour of energy piles. Int J Numer Anal Methods Geomech 39(8): 861–888. DOI: 10.1002/nag.2341. [Google Scholar]
  • Feia S, Sulem S, Canou J, Ghabezloo S, Clain X. 2016. Changes in permeability of sand during triaxial loading: effect of fine particles production. Acta Geotech 11: 1–19. DOI: 10.1007/s11400-014-0351-y. [Google Scholar]
  • Frikha W. 2010. Étude sur modèle physique du renforcement d’une argile molle par colonnes ballastées. Thèse de doctorat, École Nationale des Ingénieurs de Tunis. [Google Scholar]
  • Garnier J. 2001. Modèles physiques en géotechnique : I − Évolution des techniques expérimentales et domaines d’application. Revue Française de Geotechnique 97: 3–29. DOI: 10.1051/geotech/2001097003. [Google Scholar]
  • Kalantidou A, Tang AM, Pereira JM, Hassen G. 2012. Preliminary study on the mechanical behaviour of heat exchanger pile in physical model. Geotechnique 62(11): 1047–1051. DOI: 10.1680/geot.11.T.013. [Google Scholar]
  • Laloui L, Moreni M, Vulliet L. 2003. Comportement d’un pieu bi-fonction, fondation et échangeur de chaleur. Can Geotech J 40: 388–402. DOI: 10.1139/t02-117. [Google Scholar]
  • Laloui L, Nuth M, Vulliet L. 2006. Experimental and numerical investigations of the behaviour of a heat exchanger pile. Int J Numer Anal Methods Geomech 30(8): 763–781. DOI: 10.1002/nag.499. [Google Scholar]
  • Li ZS, Blanc M, Thorel L. 2020. Using FBGS to estimate the horizontal response of a monopile in a geotechical centrifuge. Int J Phys Model Geotech 20(3): 164–174. DOI: 10.1680/jphmg.19.00022. [Google Scholar]
  • Ng CWW, Shi C, Gunawan A, Laloui L. 2014. Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay. Geotech Lett 4: 310–316. DOI: 10.1680/geolett.14.00063. [Google Scholar]
  • Ng CWW, Shi C, Gunawan A, Laloui L, Liu L. 2015. Centrifuge modelling of heating effects on energy pile performance in saturated sand. Can Geotech J 52(8): 1045–1057. DOI: 10.1139/cgj-2014-0301. [Google Scholar]
  • Ng CWW, Ma QJ, Gunawan A. 2016. Horizontal stress change of energy piles subjected to thermal cycles in sand. Comput Geotech 78: 54–61. DOI: 10.1016/j.compgeo.2016.05.003. [Google Scholar]
  • Nguyen VT. 2017. Thermal and thermo-mechanical behaviour of energy piles. Thèse de doctorat, Université Paris-Est. [Google Scholar]
  • Nguyen VT, Tang AM, Pereira JM. 2017. Long-term thermo-mechanical behavior of energy pile in dry sand. Acta Geotech 12(4): 729–737. DOI: 10.1007/s11440-017-0539-z. [Google Scholar]
  • Nguyen VT, Wu N, Gan Y, Pereira JM, Tang AM. 2020. Long-term thermo-mechanical behaviour of energy pile in clay. Environ Geotech 7(4): 237–248. DOI: 10.1680/jenge.17.00106. [Google Scholar]
  • Olgun CG, Ozudogru TY, Abdelaziz SL, Senol A. 2015. Long-term performance of heat exchanger piles. Acta Geotech 10(5): 553–569. DOI: 10.1007/s11440-014-0334-z. [Google Scholar]
  • Pasten C, Santamarina JC. 2014. Thermally Induced Long-Term Displacement of Thermoactive Piles. J Geotech Geoenviron Eng 140(5): 6014003. DOI: 10.1061/(ASCE)GT.1943-5606.0001092. [Google Scholar]
  • Saggu R, Chakraborty T. 2015. Cyclic Thermo-Mechanical Analysis of Energy Piles in Sand. Geotech Geol Eng 33(2): 321–342. DOI: 10.1007/s10706-014-9798-8. [Google Scholar]
  • Stewart MA, McCartney JS. 2013. Centrifuge Modeling of Soil-Structure Interaction in Energy Foundations. J Geotech Geoenviron Eng 140(4): 4013044. DOI: 10.1061/(ASCE)GT.1943-5606.0001061. [Google Scholar]
  • Suryatriyastuti ME, Mroueh H, Burlon S. 2014. A load transfer approach for studying the cyclic behavior of thermo-active piles. Comput Geotech 55: 378–391. DOI: 10.1016/j.compgeo.2013.09.021. [Google Scholar]
  • Yavari N. 2014. Aspects géotechniques des pieux de fondation énergétiques. Thèse de doctorat, Université Paris-Est. https://pastel.archives-ouvertes.fr/tel-01149483. [Google Scholar]
  • Yavari N, Tang AM, Pereira JM, Hassen G. 2014a. A simple method for numerical modelling of mechanical behaviour of an energy pile. Geotech Lett 4: 119–124. DOI: 10.1680/geolett.13.00053. [Google Scholar]
  • Yavari N, Tang AM, Pereira JM, Hassen G. 2014b. Experimental study on the mechanical behaviour of a heat exchanger pile using physical modelling. Acta Geotech 9(3): 385–398. DOI: 10.1007/s11440-014-0310-7. [Google Scholar]
  • Yavari N, Tang AM, Pereira JM, Hassen G. 2016. Mechanical behaviour of a small-scale energy pile in saturated clay. Geotechnique 66(11): 878–887. DOI: 10.1680/jgeot.15.T.026. [Google Scholar]
  • Zhao R, Leung AK, Vitali D, Knappett JA, Zhou Z. 2020. Small-scale modelling of thermomechanical behaviour of reinforced concrete energy piles in soils. J Geotech Geoenviron Eng 146(4): 04020011. DOI: 10.1061/(ASCE)GT.1943-5606.0002225. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.