Accès gratuit
Numéro |
Rev. Fr. Geotech.
Numéro 168, 2021
Modélisation Physique en Géotechnique - Partie 2
|
|
---|---|---|
Numéro d'article | 1 | |
Nombre de pages | 11 | |
DOI | https://doi.org/10.1051/geotech/2021011 | |
Publié en ligne | 6 mai 2021 |
- Aydan Ö, Shimizu Y, Ichikawa Y. 1989. The effective failure modes and stability of slopes in rock mass with two discontinuity sets. Rock Mech Rock Eng 22: 163–188. https://doi.org/10.1007/BF01470985. [CrossRef] [Google Scholar]
- Barton N. 1973. Review of a new shear-strength criterion for rock joints. Eng Geol 7: 287–332. https://doi.org/10.1016/0013-7952(73)90013-6. [CrossRef] [Google Scholar]
- Barton N, Choubey V. 1977. The shear strength of rock joints in theory and practice. Rock Mech 10: 1–54. https://doi.org/10.1007/BF01261801. [CrossRef] [Google Scholar]
- Bonilla-Sierra V, Scholtès L, Donzé F, Elmouttie M. 2015. DEM analysis of rock bridges and the contribution to rock slope stability in the case of translational sliding failures. Int J Rock Mech Min Sci 80: 67–78. https://doi.org/10.1016/j.ijrmms.2015.09.008. [CrossRef] [Google Scholar]
- Buckingham E. 1914. On physically similar systems, illustration of the use of dimensional equations. Phys Rev 4: 345–376. https://doi.org/10.1103/PhysRev.4.345. [Google Scholar]
- Clark GB. 1981. Geotechnical centrifuges for model studies and physical property testing of rock and rock structures. Colarado Sch Mines Q 76(4). [Google Scholar]
- Davy P, Darcel C, Le Goc R, Mas Ivars D. 2018. Elastic properties of fractured rock masses with frictional properties and power law fracture size distributions. J Geophys Res Solid Earth. https://doi.org/10.1029/2017JB015329. [Google Scholar]
- Einstein HH, Veneziano D, Baecher GB, O’Reilly KJ. 1983. The effect of discontinuity persistence on rock slope stability. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Elsevier, pp. 227–236. https://doi.org/10.1016/0148-9062(83)90003-7. [CrossRef] [Google Scholar]
- Everling G. 1964. Model tests concerning the interaction of ground and roof support in gate-roads. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Elsevier, pp. 319IN5323–322IN16326. https://doi.org/10.1016/0148-9062(64)90002-6. [Google Scholar]
- Feng P, Meng X, Chen JF, Ye L. 2015. Mechanical properties of structures 3D printed with cementitious powders. Constr Build Mater 93: 486–497. https://doi.org/10.1016/j.conbuildmat.2015.05.132. [CrossRef] [Google Scholar]
- Fereshtenejad S, Song JJ. 2016. Fundamental study on applicability of powder-based 3D printer for physical modeling in rock mechanics. Rock Mech Rock Eng 49: 2065–2074. https://doi.org/10.1007/s00603-015-0904-x. [CrossRef] [Google Scholar]
- Fuenkajorn K, Phueakphum D. 2010. Physical model simulation of shallow openings in jointed rock mass under static and cyclic loadings. Eng Geol 113: 81–89. https://doi.org/10.1016/j.enggeo.2010.03.003. [CrossRef] [Google Scholar]
- Garnier J. 2001. Modèles physiques en géotechnique : I − Évolution des techniques expérimentales et des domaines d’application (1). Rev Fr Geotech: 3–29. https://doi.org/10.1051/geotech/2001097003. [CrossRef] [Google Scholar]
- Gerrard CM. 1982. Equivalent elastic moduli of a rock mass consisting of orthorhombic layers. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Elsevier, pp. 9–14. https://doi.org/10.1016/0148-9062(82)90705-7. [CrossRef] [Google Scholar]
- Ghabraie B, Ren G, Zhang X, Smith J. 2015. Physical modelling of subsidence from sequential extraction of partially overlapping longwall panels and study of substrata movement characteristics. Int J Coal Geol 140: 71–83. https://doi.org/10.1016/j.coal.2015.01.004. [CrossRef] [Google Scholar]
- Gomez JS, Chalaturnyk RJ, Zambrano-Narvaez G. 2019. Experimental investigation of the mechanical behavior and permeability of 3D printed sandstone analogues under triaxial conditions. Transp Porous Media 129: 541–557. https://doi.org/10.1007/s11242-018-1177-0. [CrossRef] [Google Scholar]
- Goodman RE. 1976. Methods of geological engineering in discontinuous rocks. West NewYork. [Google Scholar]
- Green DL. 2014. Modelling geomorphic systems: scaled physical models. Geomorphol Tech 18. ISSN 2047-0371. [Google Scholar]
- He M, Jia X, Gong W, Faramarzi L. 2010. Physical modeling of an underground roadway excavation in vertically stratified rock using infrared thermography. Int J Rock Mech Min Sci 47: 1212–1221. https://doi.org/10.1016/j.ijrmms.2010.06.020. [CrossRef] [Google Scholar]
- Head D, Vanorio T. 2016. Effects of changes in rock microstructures on permeability: 3-D printing investigation: permeability of printed microstructures. Geophys Res Lett 43: 7494–7502. https://doi.org/10.1002/2016GL069334. [CrossRef] [Google Scholar]
- Homand F, Belem T, Souley M. 2001. Friction and degradation of rock joint surfaces under shear loads. Int J Numer Anal Methods Geomech 25: 973–999. https://doi.org/10.1002/nag.163. [CrossRef] [Google Scholar]
- Ishibashi T, Fang Y, Elsworth D, Watanabe N, Asanuma H. 2020. Hydromechanical properties of 3D printed fractures with controlled surface roughness: insights into shear-permeability coupling processes. Int J Rock Mech Min Sci 128: 104271. https://doi.org/10.1016/j.ijrmms.2020.104271. [CrossRef] [Google Scholar]
- Ishutov S, Hasiuk FJ, Harding C, Gray JN. 2015. 3D printing sandstone porosity models. Interpretation 3: SX49–SX61. https://doi.org/10.1190/INT-2014-0266.1. [CrossRef] [Google Scholar]
- Jaber J, Conin M, Deck O, Moumni M, Godard O, Kenzari S. 2020. Investigation of the mechanical behavior of 3D printed polyamide-12 joints for reduced scale models of rock mass. Rock Mech Rock Eng 53: 2687–2705. https://doi.org/10.1007/s00603-020-02064-9. [CrossRef] [Google Scholar]
- Jaber J. 2020. Application de la fabrication additive à la modélisation physique des joints et des massifs rocheux, par approches expérimentales et numériques. Thèse en Génie civil. Université de Lorraine. [Google Scholar]
- Jiang C, Zhao GF. 2015. A preliminary study of 3D printing on rock mechanics. Rock Mech Rock Eng 48: 1041–1050. https://doi.org/10.1007/s00603-014-0612-y. [CrossRef] [Google Scholar]
- Jiang C, Zhao GF, Zhu J, Zhao YX, Shen L. 2016a. Investigation of dynamic crack coalescence using a Gypsum-like 3D printing material. Rock Mech Rock Eng 49: 3983–3998. https://doi.org/10.1007/s00603-016-0967-3. [CrossRef] [Google Scholar]
- Jiang Q, Feng X, Gong Y, Song L, Ran S, Cui J. 2016b. Reverse modelling of natural rock joints using 3D scanning and 3D printing. Comput Geotech 73: 210–220. https://doi.org/10.1016/j.compgeo.2015.11.020. [CrossRef] [Google Scholar]
- Jiang Q, Feng X, Song L, Gong Y, Zheng H, Cui J. 2016c. Modeling rock specimens through 3D printing: tentative experiments and prospects. Acta Mech Sin 32: 101–111. https://doi.org/10.1007/s10409-015-0524-4. [CrossRef] [Google Scholar]
- Ju Y, Wang L, Xie H, Ma G, Zheng Z, Mao L. 2017. Visualization and transparentization of the structure and stress field of aggregated geomaterials through 3D printing and photoelastic techniques. Rock Mech Rock Eng 50: 1383–1407. https://doi.org/10.1007/s00603-017-1171-9. [CrossRef] [Google Scholar]
- Ju Y, Xie H, Zheng Z, Lu J, Mao L, Gao F, Peng R. 2014. Visualization of the complex structure and stress field inside rock by means of 3D printing technology. Chin Sci Bull 59: 5354–5365. https://doi.org/10.1007/s11434-014-0579-9. [CrossRef] [Google Scholar]
- Kulhawy FH. 1975. Stresses and displacements around openings in homogeneous rock. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Elsevier, pp. 43–57. https://doi.org/10.1016/0148-9062(75)91775-1. [CrossRef] [Google Scholar]
- Kulhawy FH. 1978. Geomechanical model for rock foundation settelment. ASCE 104(GT2): 211–227. [Google Scholar]
- Lin P, Liu H, Zhou W. 2015. Experimental study on failure behaviour of deep tunnels under high in situ stresses. Tunn Undergr Space Technol 46: 28–45. https://doi.org/10.1016/j.tust.2014.10.009. [CrossRef] [Google Scholar]
- Liu P, Ju Y, Ranjith PG, Zheng Z, Wang L, Wanniarachchi A. 2016. Visual representation and characterization of three-dimensional hydrofracturing cracks within heterogeneous rock through 3D printing and transparent models. Int J Coal Sci Technol 3: 284–294. https://doi.org/10.1007/s40789-016-0145-y. [CrossRef] [Google Scholar]
- Liu YK, Zhou FB, Liu L, Liu C, Hu SY. 2011. An experimental and numerical investigation on the deformation of overlying coal seams above double-seam extraction for controlling coal mine methane emissions. Int J Coal Geol 87: 139–149. https://doi.org/10.1016/j.coal.2011.06.003. [CrossRef] [Google Scholar]
- Mandel J. 1962. Essais sur modèle réduits en mécanique des terrain − Étude des conditions de similitude. Rev Ind Miner 9: 611–620. [Google Scholar]
- Mestat P. 1993. Lois de comportement des géomatériaux et modélisation par la méthode des éléments finis. Coll. « Études et recherche des laboratoires des Ponts et Chaussées », série Géotechnique, ISSN 1157-3910. [Google Scholar]
- Patton FD. 1966. Multiple modes of shear failure in rock. In: Proceedings 1st Congress of International Society of Rock Mechanics, Lisbon, vol. 1, pp. 509–513. [Google Scholar]
- Piede L. 1986. Model test study on double lining of tunnels. Tunn Undergr Space Technol 1: 53–58. https://doi.org/10.1016/0886-7798(86)90128-8. [CrossRef] [Google Scholar]
- Pouya A, Ghoreychi M. 2001. Determination of rock mass strength properties by homogenization. Int J Numer Anal Methods Geomech 25: 1285–1303. https://doi.org/10.1002/nag.176. [CrossRef] [Google Scholar]
- Rachez X. 1997. Les fondations au rocher de grands viaducs : l’apport de la méthode des éléments distincts. PhD Thesis. École nationale des Ponts et Chaussées. [Google Scholar]
- Ritter S, DeJong MJ, Giardina G, Mair RJ. 2018. 3D printing of masonry structures for centrifuge modelling. In: 9th International Conference of Physical Modelling in Geotechnics, London, pp. 449–454. [CrossRef] [Google Scholar]
- Sharafisafa M, Shen L, Xu Q. 2018. Characterisation of mechanical behaviour of 3D printed rock-like material with digital image correlation. Int J Rock Mech Min Sci 11: 122–138. https://doi.org/10.1016/j.ijrmms.2018.10.012. [CrossRef] [Google Scholar]
- Song L, Jiang Q, Shi YE, et al. 2018. Feasibility investigation of 3D printing technology for geotechnical physical models: study of tunnels. Rock Mech Rock Eng 51: 2617–2637. https://doi.org/10.1007/s00603-018-1504-3. [CrossRef] [Google Scholar]
- Stathas D, Xu L, Wang JP, Ling HI, Li L. 2018. Concave segmental retaining walls. In: 9th International Conference of Physical Modelling in Geotechnics, London. [Google Scholar]
- Sturzenegger M, Stead D. 2012. The Palliser Rockslide, Canadian Rocky Mountains: characterization and modeling of a stepped failure surface. Geomorphology 138: 145–161. https://doi.org/10.1016/j.geomorph.2011.09.001. [CrossRef] [Google Scholar]
- Sui W, Hang Y, Ma L, et al. 2015. Interactions of overburden failure zones due to multiple-seam mining using longwall caving. Bull Eng Geol Environ 74: 1019–1035. https://doi.org/10.1007/s10064-014-0674-9. [CrossRef] [Google Scholar]
- Suzuki A, Sawasdee S, Makita H, Hashida T, Li K, Horne RN. 2016. Characterization of 3D printed fracture networks. In: 17 Proceedings, 41st Workshop on Geothermal Reservoir Engineering. Stanford, CA: Stanford University. [Google Scholar]
- Wang L, Ju Y, Xie H, Ma G, Mao L, He K. 2017. The mechanical and photoelastic properties of 3D printable stress-visualized materials. Sci Rep 7: 10918. https://doi.org/10.1038/s41598-017-11433-4. [CrossRef] [Google Scholar]
- Zarringhalam H, Hopkinson N, Kamperman NF, de Vlieger JJ. 2006. Effects of processing on microstructure and properties of SLS Nylon 12. Mater Sci Eng A 435–436: 172–180. https://doi.org/10.1016/j.msea.2006.07.084. [CrossRef] [Google Scholar]
- Zhou T, Zhu JB. 2018. Identification of a suitable 3D printing material for mimicking brittle and hard rocks and its brittleness enhancements. Rock Mech Rock Eng 51: 765–777. https://doi.org/10.1007/s00603-017-1335-7. [CrossRef] [Google Scholar]
- Zhou T, Zhu JB, Ju Y, Xie HP. 2019. Volumetric fracturing behavior of 3D printed artificial rocks containing single and double 3D internal flaws under static uniaxial compression. Eng Fract Mech 205: 190–204. https://doi.org/10.1016/j.engfracmech.2018.11.030. [CrossRef] [Google Scholar]
- Zhu JB, Zhou T, Liao ZY, Sun L, Li XB, Chen R. 2018. Replication of internal defects and investigation of mechanical and fracture behaviour of rock using 3D printing and 3D numerical methods in combination with X-ray computerized tomography. Int J Rock Mech Min Sci 106: 198–212. https://doi.org/10.1016/j.ijrmms.2018.04.022. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.