Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 168, 2021
Modélisation Physique en Géotechnique - Partie 2
Numéro d'article 3
Nombre de pages 14
DOI https://doi.org/10.1051/geotech/2021013
Publié en ligne 21 avril 2021
  • Almeida MSS, Almeida MCF, Trejo PCN, et al. 2014. The geotechnical beam centrifuge at COPPE geotechnical laboratory. In: Proceedings of the International Conference of Physical Modelling in Geotechnics, Perth. Physical Modelling in Geotechnics. London: Taylor and Francis Group, pp. 271–277. [Google Scholar]
  • Bruton DAS, White DJ, Cheuk C, Bolton M, Carr M. 2006. Pipe/soil interaction behavior during lateral buckling, including large-amplitude cyclic displacement tests by the Safebuck JIP. In: Proceedings of the Offshore Technology Conference, Houston, Texas, pp. 1–10. https://doi.org/10.4043/17944-MS. [Google Scholar]
  • Bruton DAS, White DJ, Carr M, Cheuk JCY. 2008. Pipe-soil interaction during lateral buckling and pipeline walking – The SAFEBUCK JIP. In: Proceedings of the Offshore Technology Conference, Houston, Texas, pp. 1–20. https://doi.org/10.4043/19589-MS. [Google Scholar]
  • Cardoso CO, Silveira RMS. 2010. Pipe-soil interaction behaviour for pipelines under large displacements on clay soils – A model for lateral residual friction factor. In: Proceedings of the Offshore Technology Conference, Houston, Texas, pp. 1–15. [Google Scholar]
  • Cardoso CO, Amaral CS, Ochi VT. 2015. The soil strength degradation influence in the axial pipe-soil. In: Proceedings of the Frontiers in Offshore Geotechnics III, Taylor and Francis, London, pp. 381–386. [Google Scholar]
  • Chatterjee S, White DJ, Randolph MF. 2012. Numerical simulations of pipe-soil interaction during large lateral movements on clay. Géotechnique 62(8): 693–705. https://doi.org/10.1680/geot.10.P.107. [Google Scholar]
  • Cheuk CY, White DJ. 2010. Modelling the dynamic embedment of seabed pipelines. Géotechnique. https://doi.org/10.1680/geot.8.P.148. [Google Scholar]
  • Cheuk CY, White DJ, Bolton MD. 2007a. Large-scale modelling of soil-pipe interaction during large amplitude movements of partially-embedded pipelines. Can Geotech J 44(8): 977–996. https://doi.org/10.1139/T07-037. [Google Scholar]
  • Cheuk CY, Take AW, Bolton MD, Oliveira JRMS. 2007b. Soil restraint on buckling oil and gas pipelines in lumpy clay fill. Eng Struct 29: 973–982. https://doi.org/10.1016/j.engstruct.2006.06.027. [Google Scholar]
  • Cocjin ML, Gourvenec SM, White DJ. 2018. Softening and consolidation around seabed pipelines: centrifuge modelling. Géotechnique 68(2). https://doi.org/10.1680/jgeot.16.P.280. [Google Scholar]
  • Dendani H, Jaeck C. 2007. Pipe-soil interaction in highly plastic clays. In: Proceedings of the International Offshore Site Investigation and Geotechnics Conference, Vol. 21(4), pp. 1166–1171. [Google Scholar]
  • Dingle HRC, White DJ, Gaudin C. 2008. Mechanisms of pipe embedment and lateral breakout on soft clay. Can Geotech J 45: 636–652. https://doi.org/10.1139/T08-009. [Google Scholar]
  • Kong D, Martin CM, Byrne B. 2017. Sequential limit analysis of pipe-soil interaction during large-amplitude cyclic lateral displacements. Géotechnique. http://dx.doi.org/10.1680/jgeot.16.P.256. [Google Scholar]
  • Kong D, Zhu J, Wu L, Zhu B. 2020. Break-out resistance of offshore pipelines buried in inclined clayey seabed. J Appl Ocean Res 94. https://doi.org/10.1016/j.apor.2019.102007. [CrossRef] [Google Scholar]
  • Lee YS, Smith CC, Cheuk CY. 2011. Lateral breakout resistance of shallowly embedded offshore pipelines. Proc Eng 14: 1690–1695. https://doi.org/10.1016/j.proeng.2011.07.212. [Google Scholar]
  • Lukiantchuki JA, Oliveira JRMS, Pessin J, Almeida MSS. 2018. Centrifuge modelling of traffic simulation on a construction waste layer. Int J Phys Model Geotech 18(6): 290–300. https://doi.org/10.1680/jphmg.17.00012. [Google Scholar]
  • Manivannan R, Wong JC, Leung CF, Tan SA. 1998. Consolidation characteristics of lumpy fill. In: Proceedings of the International Conference Centrifuge 98, Tokyo, Vol. 1, pp. 889–894. [Google Scholar]
  • Merifield RS, White DJ, Randolph MF. 2009. The effect of surface heave on the response of partially embedded pipelines on clay. J Geotech Geoenviron Eng 135(6): 819–829. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000070. [Google Scholar]
  • Morris DV, Webb RE. 1988. Self-burial of laterally loaded offshore pipelines in weak sediments. In: Proceedings of Offshore Technology Conference, Houston, Texas, pp. 421–428. [Google Scholar]
  • Oliphant J, Maconochie A, White DJ, Bolton M. 2009. Trench interaction forces during lateral scr movement in deepwater clays. In: Proceedings of the Offshore Technology Conference, OTC 19944. [Google Scholar]
  • Oliveira JRMS, Almeida MSS, Almeida MCF, Borges RG. 2010. Physical modeling of lateral clay-pipe interaction. J Geotech Geoenviron Eng ASCE 136(7): 950–956. http://dx.doi.org/10.1061/(ASCE)GT1943-5606.0000311. [Google Scholar]
  • Oliveira JRMS, Almeida MSS, Motta HPG, Almeida MCF. 2011. Influence of penetration rate on penetrometer resistance. J Geotech Geoenviron Eng ASCE 137(7): 19–24. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000480. [Google Scholar]
  • Rammah KI, Oliveira JRMS, Almeida MCF, Almeida MSS, Borges RG. 2014. Centrifuge modelling of a buried pipeline below an embankment. Int J Phys Model Geotech 14: 116–127. https://doi.org/10.1680/ijpmg.14.00006. [Google Scholar]
  • Randolph MF. 2012. Offshore geotechnics – The challenges of deepwater soft sediments. In: Geotechnical Engineering State of the Art and Practice: Keynote lectures from GeoCongress 2012, California, USA, pp. 241–271. [Google Scholar]
  • Randolph MF, Hope S. 2004. Effect of cone velocity on cone resistance and excess pore pressures. In: Proceedings of International Symposium on Engineering Practice and Performance of Soft Deposits, Yodogawa Kogisha, Osaka, Japan, pp. 147–152. [Google Scholar]
  • Rismanchian A, White DJ, Randolph MF, Martin CM. 2019. Shear strength of soil berm during lateral buckling of subsea pipelines. J Appl Ocean Res 90. https://doi.org/10.1016/j.apor.2019.101864. [CrossRef] [Google Scholar]
  • Schneider JA, Lehane BM, Schnaid F. 2007. Velocity effects on piezocone measurements in normally and over consolidated clays. Int J Phys Model Geotech 7(2): 23–34. https://doi.org/10.1680/ijpmg.2007.070202. [Google Scholar]
  • Verley R, Lund KM. 1995. A soil resistance model for pipelines placed on clay soils. In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering ASME, Pipeline Technology, New York, Vol. 5, pp. 225–232. [Google Scholar]
  • Wang L, Li K, Yuan F. 2017. Lateral cyclic interaction between catenary riser and soft seabed. J Appl Ocean Res 63: 11–23. [Google Scholar]
  • White DJ, Cheuk CY. 2008. Modelling the soil resistance on seabed pipelines during large cycles of lateral movement. J Marine Struct 21(1): 59–79. https://doi.org/10.1016/j.marstruc.2007.05.001. [Google Scholar]
  • White DJ, Clukey EC, Randolph MF, et al. 2017. The state of knowledge of pipe-soil interaction for on-bottom pipeline design. In: Offshore Technology Conference, Houston, Texas, USA, OTC-27623-MS. [Google Scholar]
  • You J, Biscontin G, Aubeny CP. 2008. Seafloor interaction with steel catenary risers. In: Proceedings of the International Offshore and Polar Engineering Conference, Vancouver, BC, Canada, Vol. 8(510), pp. 110–117. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.