Accès gratuit

Cet article a un erratum : [https://doi.org/10.1051/geotech/2024026]


Numéro
Rev. Fr. Geotech.
Numéro 177, 2023
Hommage à Pierre Bérest
Numéro d'article 4
Nombre de pages 20
DOI https://doi.org/10.1051/geotech/2024019
Publié en ligne 23 avril 2024
  • Andreani M, Boullier AM, Gratier JP. 2005. Development of schistosity by dissolution-crystallization in a Californian serpentinite gouge. J Struct Geol 27: 2256–2267. [CrossRef] [Google Scholar]
  • Ashby MF, Verrall RA. 1973. Diffusion-accommodated flow and superplasticity. Acta Metall 21: 149–163. [CrossRef] [Google Scholar]
  • Bellanger M, Bellahsen N, Jolivet L, Baudin T, Augier R, Boutoux A. 2014. Basement shear zones development and shortening kinematics in the Ecrins Massif, Western Alps. Tectonics 33: 84–111. [CrossRef] [Google Scholar]
  • Berest P, Blum P, Charpentier JP, Gharbi H, Vales F. 2005. Very slow creep tests on rock samples. Int J Rock Mech Min Sci 42: 569–576. [CrossRef] [Google Scholar]
  • Berest P, Gharbi H, Bianco-Martin L, et al. 2023. Salt creep: transition between the low and high stress domains. Rock Mech Rock Eng. 56: 8305–8316. [CrossRef] [Google Scholar]
  • Bos B, Spiers CJ. 2002. Frictional-viscous flow of phyllosilicate-bearing fault rock: microphysical model and implications for crustal strength profiles. J Geophys Res Solid Earth 107. [Google Scholar]
  • Brantley S, Evans B, Hickman SH, Crerar DA. 1990. Healing of microcracks in quartz: implications for fluid flow. Geology 18: 136–139. [CrossRef] [Google Scholar]
  • Burkhard M. 1992. Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review. J Struct Geol 15: 351–368. [Google Scholar]
  • Byerlee JD. 1978. Friction of rocks. Pure Appl Geophys 116: 615–626. [CrossRef] [Google Scholar]
  • Cakir Z, de Chabalier JB, Armijo R, Meyer B, Barka A, Peltzer G. 2003. Coseismic and early post-seismic slip associated with 1999 Izmit earthquake (Turkey) from SAR interferomery and tectonic field observations. Geophys J Int 155: 93–110. [CrossRef] [Google Scholar]
  • Chen CH, Niemeijer A, Spiers CJ. 2022. Seismic fault slip behavior predicted from internal microphysical processes. J Geophys Res Solid Earth 127: e2022J B024530. [Google Scholar]
  • Chen J, Niemeijer AR, Spiers CJ. 2021. Microphysical modeling of carbonate fault friction at slip rates spanning the full seismic cycle. J Geophys Res: Solid Earth 126: e2020JB021024. [CrossRef] [Google Scholar]
  • Chen J, Spiers CJ. 2016. Rate and state frictional and healing behavior of carbonate fault gouge explained using microphysical model. J Geophys Res 121: 8642–8665. [CrossRef] [Google Scholar]
  • Chen WP, Molnar P. 1983. Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. J Geophys Res Solid Earth 88: 4183–4214. [CrossRef] [Google Scholar]
  • Correns CW. 1949. Growth and dissolution of crystals under linear pressure. Discuss Faraday Soc 5: 261–271. [Google Scholar]
  • Cosgrove JW, Hudson JA. 2016. Structural Geology and Rock Engineering. Imperial college Press. [Google Scholar]
  • Croize D, Renard F, Bjorlykke K, Dysthe DK. 2010. Experimental calcite dissolution under stress: evolution of grain contact microstructure during pressure solution creep. J Geophys Res Solid Earth 115: B09207. [Google Scholar]
  • de Meer S, Spiers CJ, Nakashima S. 2005. Structure and diffusive properties of fluid-filled grain boundaries: an in-situ study using infrared (micro) spectroscopy. Earth Planet Sci Lett 232: 403–414. [CrossRef] [Google Scholar]
  • den Brok SWJ. 1998. Effect of microcracking on pressure-solution strain rate: the Gratz grain-boundary model. Geology 26: 915–918. [CrossRef] [Google Scholar]
  • Den Hartog SAM, Peach CJ, de Winter DAM, Spiers CJ, Shimamoto T. 2012. Frictional properties of megathrust fault gouges at low sliding velocities: new data on effects of normal stress and temperature. J Struct Geol 38: 156–171. [CrossRef] [Google Scholar]
  • Dewers T, Ortoleva P. 1990. A coupled reaction / transport / mechanical model for intergranular pressure solution stylolites, and differential compaction and cementation in clean sandstones. Geochim Cosmochim Acta 54: 1609–1625. [CrossRef] [Google Scholar]
  • Dumont T, Champagnac JD, Crouzet C, Rochat P. 2008. Multistage shortening in the Dauphiné zone (French Alps): the record of Alpine collision and implication for pre-Alpine restoration. Swiss J Geosci 101: 89–110. [CrossRef] [Google Scholar]
  • Dysthe DK, Podladchikov Y, Renard F, Feder J, Jamtveit B. 2002. Universal scaling in transient creep. Phys Rev Lett 89. doi:10.1103/PhysRevLett.1189.246102 [Google Scholar]
  • Dysthe DK, Renard F, Feder J, Jamtveit B, Meakin P, Jøssang T. 2003. High resolution measurments of pressure solution creep. Phys Rev E 68. doi: 10.1103/PhysRevE 1168.011603 [CrossRef] [Google Scholar]
  • Ebner M, Koehn D, Toussaint R, Renard F, Schmittbuhl J. 2009. Stress sensitivity of stylolite morphology. Earth Planet Sci Lett 277: 394–398. [CrossRef] [Google Scholar]
  • Elliott D. 1973. Diffusion flow laws in metamorphic rocks. Geol Soc Am Bull 84: 2645–2664. [CrossRef] [Google Scholar]
  • Espinosa-Marzal RM, Scherer GW. Mechanisms of damage by salt. In Smith BJ, GomezHeras M, Viles HA, Cassar J, eds. Limestone in the Built Environment: Present Day Challenges for the Preservation of the Past 2010, pp. 61–77. [Google Scholar]
  • Fischer GW, Elliott D. Criteria for quasi-steady diffusion and local equilibrium in metamorphism. In Hofmann AW, Giletti BJ, Yoder HS, Yund R, eds. Geochemical transports and kinetics. Carnegie Inst. Washington Publ., Washington 1974, pp. 77–89. [Google Scholar]
  • Foulger GR, Wilson MP, Gluyas JG, Julian BR, Davies RJ. 2018. Global review of human-induced earthquakes. Earth Sci Rev 178: 438–514. [CrossRef] [Google Scholar]
  • Ghoussoub J, Leroy YM. 2001. Solid-fluid phase transformation within grain boundaries during compaction by pressure solution. J Mech Phys Solids 49: 2385–2430. [CrossRef] [Google Scholar]
  • Gibbs JW. 1877. On the equilibrium of heterogeneous substances. Trans Conn Acad 3: 108–248 and 343–524. [Google Scholar]
  • Gidon M. 1998. GEOL-ALP, in: http://www.geol-alp.com C (Ed.). [Google Scholar]
  • Goguel J. 1948. Introduction à l’étude mécanique des déformations de l’écorce terrestre. Memoire du service de la carte géologique de France, 540p. [Google Scholar]
  • Gratier JP. 1993. Experimental pressure solution of halite by an indenter technique. Geophys Res Lett 20: 1647–1650. [CrossRef] [Google Scholar]
  • Gratier JP. 2011. Fault permeability and strength evolution related to fracturing and healing episodic processes (years to millennia): the role of pressure solution. Oil Gas Sci Technol 3: 491–506. [CrossRef] [Google Scholar]
  • Gratier JP, Dysthe DK, Renard F. 2013a. The role of pressure solution creep in the ductility of the Earth’s upper crust. Adv Geophys 54: 47–179. [Google Scholar]
  • Gratier JP, Favreau P, Renard F. 2003. Modeling fluid transfer along California faults when integrating pressure solution crack sealing and compaction processes. J Geophys Res Solid Earth 108: 28–52. [CrossRef] [Google Scholar]
  • Gratier JP, Frery E, Deschamps P, et al. 2012. How travertine veins grow from top to bottom and lift the rocks above them: the effect of crystallization force. Geology in press [Google Scholar]
  • Gratier JP, Gamond JF. Transition between seismic and aseismic deformation in the upper crust. In: Knipe RJR, E. H. ed. Deformation Mechanisms, Rheology and Tectonics. Geological Society Special Publication, 1990, pp. 461–473. [Google Scholar]
  • Gratier JP, Gueydan F. Deformation in the presence of fluids and mineral reactions: effect of fracturing and fluid-rock interaction on seismic cycles. In Handy MR, Hirth G, Hovius N, Workshop D, eds. Tectonic Faults: agent of change on a dynamic earth. Cambridge Mass, USA: The MIT Press, 2007, pp. 319–356. [CrossRef] [Google Scholar]
  • Gratier JP, Guiguet R, Renard F, Jenatton L, Bernard D. 2009. A pressure solution creep law for quartz from indentation experiments. J Geophys Res Solid Earth 114. doi:10.1029/2008 JB005652. [CrossRef] [Google Scholar]
  • Gratier JP, Guillier B, Delorme A. 1991. Restoration and balance of a folded and faulted surface by best-fitting of finite elements: principle and applications. J Struct Geol 13: 111–115. [CrossRef] [Google Scholar]
  • Gratier JP, Hopps T, Sorlien C, Wright T. 1999a. Recent crustal deformation in Southern California deduced from the restoration of folded and faulted strata. J Geophys Res Solid Earth 104: 4887–4899. [CrossRef] [Google Scholar]
  • Gratier JP, Menegon L, Renard F. 2023. Pressure solution grain boundary sliding as a large strain mechanism of superplastic flow in the upper crust. J Geophys Res Solid Earth 128: e2022J B026019. [CrossRef] [Google Scholar]
  • Gratier JP, Muquet L, Hassani R, Renard F. 2005. Experimental microstylolites in quartz and modeled application to natural stylolitic structures. J Struct Geol 27: 89–100. [CrossRef] [Google Scholar]
  • Gratier JP, Noiriel C, Renard F. 2015. Experimental evidence for rock layering development by pressure solution. Geology 43: 871–874. [CrossRef] [Google Scholar]
  • Gratier JP, Renard F, Labaume P. 1999b. How pressure solution creep and fracturing processes interact in the upper crust to make it behave in both a brittle and viscous manner. J Struct Geol 21: 1189–1197. [CrossRef] [Google Scholar]
  • Gratier JP, Renard F, Vial B. 2014. Postseismic pressure solution creep: evidence and time-dependent change from dynamic indenting experiments. J Geophys Res Solid Earth 119. [Google Scholar]
  • Gratier JP, Richard J, Renard FS, et al. 2011. Aseismic sliding of active faults by pressure solution creep: evidence from the San Andreas Fault Observatory at Depth. Geology 39: 1131–1134. [CrossRef] [Google Scholar]
  • Gratier JP, Thouvenot F, Jenatton L, Tourette A, Doan M-L., Renard F. 2013b. Geological control of the partitioning between seismic and aseismic sliding behaviour in active faults: evidence from the Western Alps, France. Tectonophysics 600: 226–242 [CrossRef] [Google Scholar]
  • Gratier JP, Vialon P. 1980. Deformation pattern in a heterogeneous material: folded and cleaved sedimentary cover immediately overlying a crystalline basement (Oisans, French Alps). Tectonophysics 65: 151–180. [CrossRef] [Google Scholar]
  • Gratz AJ. 1991. Solution-transfer compaction of quartzites: progress toward a rate law. Geology 19: 901–904. [CrossRef] [Google Scholar]
  • Heald MT. 1955. Stylolites in sandstones. J Geol 63: 101–114. [CrossRef] [Google Scholar]
  • Heidug WK, Leroy YM. 1994. Geometrical evolution of stressed and curved solid-fluid phase boundary. 1. Transformation kinetics. J Geophys Res Solid Earth 99: 505–515. [CrossRef] [Google Scholar]
  • Hickman SH, Evans B. 1995. Kinetics of pressure solution at halite-silica interfaces and intergranular clay films. J Geophys Res 100: 13113–13132. [CrossRef] [Google Scholar]
  • Hobbs BE, Means WD, Williams PF. 1976. An outline of structural geology. Wiley and Sons. [Google Scholar]
  • Hunfeld LB, Chen J, Hol S, Niemeijer AR, Spiers CJ. 2020. Healing behavior of simulated fault gouges from the Groningen gas field and implications for induced fault reactivation. J Geophys Res: Solid Earth 125: e2019J B018790. [CrossRef] [Google Scholar]
  • Kaduri M, Gratier JP, Lasserre C, Cakir Z, Renard F. 2019. Quantifying the partition between seismic and sseismic deformation along creeping and locked sections of the North Anatolian Fault, Turkey. Pure Appl Geophys 176: 1293–1321. [CrossRef] [Google Scholar]
  • Kelemen PB, Hirth G. 2012. Reaction-driven cracking during retrograde metamorphism: olivine hydration and carbonation. Earth Planet Sci Lett 345–348: 81–89. [Google Scholar]
  • Kingery WD, Bowen HK, Ulhmann DR. 1976. Introduction to ceramics, 2nd ed. New York: Wiley-Interscience, John Wiley & Sons. [Google Scholar]
  • Lehner FK. 1995. A model for intergranular pressure solution in open systems. Tectonophysics 245: 153–170. [CrossRef] [Google Scholar]
  • Lehner FK, Bataille J. 1985. Nonequilibrium thermodynamics of pressure solution. PAGEOPH 122: 53–85. [CrossRef] [Google Scholar]
  • Malvoisin B, Baumgartner LP. 2021. Mineral dissolution and precipitation under stress: model formulation and application to metamorphic reactions. Geochem Geophys Geosyst 22. [CrossRef] [Google Scholar]
  • McEwen TJ. 1978. Diffusional mass transfer process in pitted pebble conglomerates. Contrib Mineral Petrol 67: 405–415. [CrossRef] [Google Scholar]
  • Meyer EE, Greene GW, Alcantar NA, Israelachvili JN, Boles JR. 2006. Experimental investigation of the dissolution of quartz by a muscovite mica surface: implications for pressure solution. J Geophys Res 111, doi:10.1029/2005 JB004010. [Google Scholar]
  • Moore DE, Lockner DA. 2007. Friction of the smectite clay montmorillonite: a review and interpretation of data. De Gruyter. [Google Scholar]
  • Moore DE, Rymer MJ. 2007. Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 448: 795–797. [CrossRef] [Google Scholar]
  • Niemeijer AR, Spiers CJ. 2007. A microphysical model for strong velocity weakening in phyllosilicate-bearing fault gouges. J Geophys Res 112: B10405. [Google Scholar]
  • Noiriel C, Renard F, Doan ML, Gratier JP. 2010. Intense fracturing and fracture sealing induced by mineral growth in porous rocks. Chem Geol 269: 197–209. [CrossRef] [Google Scholar]
  • Paterson MS. 1973. Nonhydrostatic thermodynamics and its geologic applications. Rev Geophys Space Phys 11: 355–389. [CrossRef] [Google Scholar]
  • Paterson MS. 1978. Experimental rock deformation: the brittle field. Berlin: Springer-Verlag. [Google Scholar]
  • Pfiffner OA. 2017. Thick-skinned and thin-skinned tectonics: a global perspective. Geosciences 7: 71. [CrossRef] [Google Scholar]
  • Poirier JP. 1985. Creep of crystals. Cambridge University Press. [Google Scholar]
  • Raj R, Chyung CK. 1981. Solution-precipitation creep in glass ceramics. Acta Metall 29: 159–166. [CrossRef] [Google Scholar]
  • Ramsay JG. 1967. Folding and fracturing of rocks. MacGraw-Hill Book Company. [Google Scholar]
  • Ramsay JG. 1980. The crack-seal mechanism of rock deformation. Nature 284: 135–139. [Google Scholar]
  • Renard F, Gratier JP, Jamtveit B. 2000. Kinetics of crack-sealing, intergranular pressure solution, and compaction around active faults. J Struct Geol 22: 1395–1407. [CrossRef] [Google Scholar]
  • Renard F, Ortoleva P. 1997. Water films at grain-grain contacts: Debye-Huckel, osmotic model of stress, salinity, and mineralogy dependence. Geochim Cosmochim Acta 61: 1963–1970. [CrossRef] [Google Scholar]
  • Renard F, Ortoleva P, Gratier JP. 1997. Pressure solution in sandstones: influence of clays and dependence on temperature and stress. Tectonophysics 280: 257–266. [CrossRef] [Google Scholar]
  • Renard F, Park A, Ortoleva P, Gratier JP. 1999. An integrated model for transitional pressure solution in sandstones. Tectonophysics 312: 97–115. [CrossRef] [Google Scholar]
  • Rolland A, Toussaint R, Baud P, et al. 2012. Modeling the growth of stylolites in sedimentary rocks. J Geophys Res Solid Earth 117: B06403. [CrossRef] [Google Scholar]
  • Ruiz-Agudo E, Putnis CV, Putnis A. 2014. Coupled dissolution and precipitation mineral-fluid interfaces. Chem Geol 383: 132–146. [CrossRef] [Google Scholar]
  • Rutter EH. 1976. The kinetics of rock deformation by pressure solution. Philos Trans Royal Soc London 283: 203–219. [Google Scholar]
  • Rutter EH. 1983. Pressure solution in nature, theory and experiment. J Geol Soc London 140: 725–740. [CrossRef] [Google Scholar]
  • Rutter EH, Mainprice DH. 1978. The effect of water on stress relaxation of faulted and unfaulted sandstones. Pure Appl Geophys 116: 634–654. [CrossRef] [Google Scholar]
  • Rutter EH, Mainprice DH. 1979. On the possibility of slow fault slip controlled by a diffusive mass transfer process Gerlands Beiträge zur Geophysik 88: 154–162. [Google Scholar]
  • Schmid SM, Boland JN, Paterson MS. 1977. Superplastic flow in finegrained limestone. Tectonophysics 43: 257–291. [CrossRef] [Google Scholar]
  • Schmittbuhl J, Renard F, Gratier JP, Toussaint R. 2004. Roughness of stylolites: implication of 3D high resolution topography measurements. Phys Rev Lett 93. [Google Scholar]
  • Scholtz CH. 1998. Earthquakes and friction laws. Nature 391: 37–42. [CrossRef] [Google Scholar]
  • Schutjens P, Spiers CJ. 1999. Intergranular pressure solution in NaCl: Grain-to-grain contact experiments under the optical microscope. Oil Gas Sci Technol-Revue De L Institut Francais Du Petrole 54: 729–750. [CrossRef] [Google Scholar]
  • Schutjens P, Spiers CJ, Niemeijer A. 2021. Surface microstructures developed on polished quartz crystals embedded in wet quartz sand compacted under hydrothermal conditions. Sci Rep 11: 14920. [CrossRef] [Google Scholar]
  • Shimizu I. 1992. Nonhydrostatic and nonequilibrium thermodynamics of deformable materials. J Geophys Res Solid Earth 97: 4587–4597. [CrossRef] [Google Scholar]
  • Sibson RH. 1982. Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States. Bull Seismol Soc Am 72: 151–163. [Google Scholar]
  • Smith DL, Evans B. 1984. Diffusional crack healing in quartz. J Geophys Res 89: 4125–4135. [CrossRef] [Google Scholar]
  • Sorby HC. 1863. On the direct correlation of mechanical and chemical forces. Proc Royal Soc London 12: 538–550. [CrossRef] [Google Scholar]
  • Spiers CJ, Brzesowsky RH. 1993. Densification behaviour of wet granular salt: theory versus experiment, Seventh Symposium on salt, pp. 83–91. [Google Scholar]
  • Spiers CJ, De Meer S, Niemeijer AR, Zhang X. Kinetics of rock deformation by pressure solution and the role of thin aqueous films. In Nakashima S, Spiers CJ, Mercury L, Fenter PA, Hochella MF, eds. Physicochemistry of water in geological and biological systems. Tokyo: Universal Academy Press, 2004, pp. 129–158. [Google Scholar]
  • Steiger M. 2005. Crystal growth in porous materials −I: The crystallization pressure of large crystals. J Cryst Growth 282: 455–459. [CrossRef] [Google Scholar]
  • Suppe J. 1985. Principe of structural geology. Prentice-Hall. [Google Scholar]
  • Taber S. 1916. The growth of crystals under external pressure. Am J Sci XLI, 532–556. [CrossRef] [Google Scholar]
  • Tenthorey E, Cox SF. 2006. Cohesive strengthening of fault zones during the interseismic period: an experimental study. J Geophys Res Solid Earth 111: 59–72. [CrossRef] [Google Scholar]
  • Thibert B, Gratier JP, J.M. M. 2005. A direct method for modeling developable strata and its geological application to Ventura Basin (California). J Struct Geol 27: 303–316. [CrossRef] [Google Scholar]
  • Thomson J. 1861. Collected papers in physics and engineering. Cambridge university press, p. 1912. [Google Scholar]
  • Toussaint R, Aharonov E, Koehn D, et al. 2018. Stylolites: a review. J Struct Geol 114: 163–195. [CrossRef] [Google Scholar]
  • Urai JL, Spiers CJ, Peach CJ, Franssen R, Liezenberg JL. 1987. Deformation mechanisms operating in naturally defomed halite rocks as deduced from microstructural investigations. Geologie En Mijnbouw 66: 165–176. [Google Scholar]
  • van Noort R, Spiers C, Peach C. 2007. Effects of orientation on the diffusive properties of fluid-filled grain boundaries during pressure solution. Phys Chem Miner 34: 95–112. [Google Scholar]
  • van Noort R, Spiers CJ. 2009. Kinetic effects of microscale plasticity at grain boundaries during pressure solution. J Geophys Res Solid Earth 114. [Google Scholar]
  • van Noort R, Visser HJM, Spiers CJ. 2008. Influence of grain boundary structure on dissolution controlled pressure solution and retarding effects of grain boundary healing. J Geophys Res Solid Earth 113, doi:10.1029/2007JB005223 [Google Scholar]
  • Van Oosterhout BGA, Hangx SJT, Spiers CJ. 2022. A threshold stress for pressure solution creep in rock salt: model predictions vs. observations. CRC Press. [Google Scholar]
  • Verberne BA, van den Ende MPA, Chen J, Niemeijer AR, Spiers CJ. 2020. The physics of fault friction: insights from experiements on simulated gouges at low shearing velocities. J Geophys Res Solid Earth 11: 2075–2095. [Google Scholar]
  • Weyl PK. 1959. Pressure solution and the force of crystallization: a phenomenological theory. J Geophys Res Solid Earth 64: 2001–2025. [CrossRef] [Google Scholar]
  • Wintsch RP, Christoffersen R, Kronenberg AK. 1995. Fluid-rock reaction weakening of fault zones. J Geophys Res 100: 13021–13032. [CrossRef] [Google Scholar]
  • Wintsch RP, Dunning J. 1985. The effect of dislocation density on the aqueous solubility of quartz and some geologic implications: a theoretical approach. J Geophys Res Solid Earth 90: 3649–3657. [CrossRef] [Google Scholar]
  • Wintsch RP, Keewook Y. 2002. Dissolution and replacement creep: a significant deformation mechanism in mid-crustal rocks. J Struct Geol 24: 1179–1193. [CrossRef] [Google Scholar]
  • Wolterbeek TKT, van Noort R, Spiers CJ. 2018. Reaction-driven casing expansion: potential for wellbore leakage mitigation. Acta Geotech 13: 341–366. [Google Scholar]
  • Yasuhara H, Marone C, Elsworth D. 2005. Fault zone restrengthening and frictional healing: the role of pressure solution. J Geophys Res Solid Earth 110, doi:101029/102004 JB003327. [CrossRef] [Google Scholar]
  • Zhang XM, Spiers CJ. 2005. Compaction of granular calcite by pressure solution at room temperature and effects of pore fluid chemistry. Int J Rock Mech Min Sci 42: 950–960. [CrossRef] [Google Scholar]
  • Zhang XM, Spiers CJ, Peach CJ. 2010. Compaction creep of wet granular calcite by pressure solution at 28 degrees C to 150 degrees C. J Geophys Res Solid Earth 115, doi:10.1029/2008 JB005853. [Google Scholar]
  • Zhang XM, Spiers CJ, Peach CJ. 2011. Effects of pore fluid flow and chemistry on compaction creep of calcite by pressure solution at 150 degrees C. Geofluids 11: 108–122. [CrossRef] [Google Scholar]
  • Zubtsov S, Renard F, Gratier JP, Guiguet R, Dysthe DK, Traskine V. 2004. Experimental pressure solution compaction of synthetic halite/calcite aggregates. Tectonophysics 385: 45–57. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.