Free Access
Review
Issue
Rev. Fr. Geotech.
Number 155, 2018
Article Number 2
Number of page(s) 6
DOI https://doi.org/10.1051/geotech/2018006
Published online 05 October 2018
  • Camusso M, Billaux D. 2018. Stockage de Wittelsheim. Étude de l’évolution de la subsidence en surface au-dessus du stockage. Rapport Itasca 18R-004 pour Stocamine. [Google Scholar]
  • Damjanac B, Cundall P. 2016. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs. Comput Geotech 71: 283–294. [CrossRef] [Google Scholar]
  • Follin S, Hartley L. 2014. Approaches to confirmatory testing of a groundwater flow model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22 (2): 333–349. [CrossRef] [Google Scholar]
  • Follin S, Hartley L, Rhen I, et al. 2014. A methodology to constrain the parameters of a hydrogeological discrete fracture network model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22 (2): 313–331. [CrossRef] [Google Scholar]
  • Furtney J. 2016. PFC3D modeling of rock fragmentation by pressure pulse. Communication interne Itasca (technical memorandum 8528-03), 10 p. [Google Scholar]
  • Furtney JK, Andrieux P, Hall AK. 2016. Applications for numerical modeling of blast induced rock fracture. In: Proceedings 50th US Rock Mechanics/Geomechanics Symposium, Alexandria, Virginia, ARMA- 2016–621. [Google Scholar]
  • Garza-Cruz TV, Fuenzalida M, Pierce M, Andrieux P. 2014. A 3DEC-FLAC3D model to predict primary fragmentation distribution in cave mines. In: Proceedings, Third International Symposium on Block and Sublevel Caving, Santiago, Chile, pp. 146-158. [Google Scholar]
  • Hoek E, Brown ET. 1998. Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8): 1165–1186. [Google Scholar]
  • Le Goc R, Darcel C, Davy P, Pierce M. 2014. Effective elastic properties of 3D fractured systems. In: Proceedings of the 1st International Conference on Discrete Fracture Network Engineering, Vancouver, Canada. [Google Scholar]
  • Lorig LJ, Darcel C, Damjanac B, Pierce ME, Billaux D. 2015. Application of discrete fracture networks in mining and civil geomechanics. Min Technol 124 (4): 239–254. [CrossRef] [Google Scholar]
  • Martin F, Saïtta A. 2012. Cours de travaux souterrains et de mécanique des roches. ENS Cachan, 88 p. [Google Scholar]
  • Mas Ivars D, Pierce ME, Darcel C, et al. 2011. The synthetic rock mass approach for jointed rock mass modelling. Int J Rock Mech Min Sci 48(2): 219–244. [CrossRef] [Google Scholar]
  • Nikolić M, Roje-Bonacci T, Ibrahimbegović A. 2016. Overview of the numerical methods for the modelling of rocks mechanics problems. Teh Vjesn 23 (2): 627–637. [Google Scholar]
  • Jaeger JC, Cook NGW. 1979. Fundamentals of rocks mechanics. Chapman et Hall, 593 p. [Google Scholar]
  • Potyondy DO, Cundall PA. 2004. A bonded-particle model for rock. Int J Rock Mech Min Sci 41 (8): 1329–1364. [CrossRef] [Google Scholar]
  • Rojek J, Oñate E, Labra C, Kargl H. 2011. Discrete element simulation of rock cutting. Int J Rock Mech Min Sci 48 (6): 996–1010. [CrossRef] [Google Scholar]
  • Tran-Manh H. 2014. Comportement des tunnels en terrain poussant. Thèse de doctorat de l’Université Paris-Est, 194 p. [Google Scholar]
  • Tran-Manh H, Sulem J, Subrin D, Billaux D. 2015. Anisotropic time-dependent modeling of tunnel excavation in squeezing ground. Rock Mech Rock Eng 48 (6): 2301–2317. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.