Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 152, 2017
Numéro d'article 3
Nombre de pages 10
DOI https://doi.org/10.1051/geotech/2017008
Publié en ligne 7 septembre 2017
  • Abba AJ, Sloan SW. 1995. A smooth hyperbolic approximation of the Mohr-Coulomb yield criterion. Comput Struct 54: 427–441. [CrossRef] [Google Scholar]
  • Barton N. 1976. The shear strength of rock and rock joints. Int J Rock Mech Min Sci Geomech Abstr 13: 255–279. [CrossRef] [Google Scholar]
  • Benz T, Schwab R, Kauther R, Vermeer P. 2008. A Hoek-Brown criterion with intrinsic material strength factorization. Int J Rock Mech Min Sci 45: 210–222. [CrossRef] [Google Scholar]
  • Chang C, Haimson B. 2000. True triaxial strength and deformability of the German Continental deep drilling program (KTB) deep hole amphibolite. J Geophys Res 105: 18999–19013. [CrossRef] [Google Scholar]
  • Colmenares LB, Zoback MD. 2002. A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks. Int J Rock Mech Min Sci 39: 695–729. [CrossRef] [Google Scholar]
  • Ewy R. 1999. Wellbore-stability predictions by use of a modified Lade criterion. SPE Drill Complet 14(2): 85–91. [CrossRef] [Google Scholar]
  • Hoek E, Brown ET. 1988. The Hoek-Brown failure criterion – a 1988 update. In: Curran JC, ed. Proc. 15th Canadian Rock Mech. Symp. Toronto: Dept. Civil Engineering, University of Toronto. pp. 31–38. [Google Scholar]
  • Lade P, Duncan J. 1975. Elasto-plastic stress-strain theory for cohesionless soil. J Geotech Eng Div ASCE 101: 1037–1053. [Google Scholar]
  • Mogi K. 1967. Effect of the intermediate principal stress on rock failure. J Geophys Res 72: 5117–5131. [CrossRef] [Google Scholar]
  • Mogi K. 1971. Fracture and flow of rocks under high triaxial compression. J Geophys Res 76: 1255–1269. [CrossRef] [Google Scholar]
  • Pantelis L, Exadaktylos G. 2013. A smooth hyperpolic failure criterion for cohesive-frictional materials. Int J Rock Mech Min Sci 58: 85–91. [Google Scholar]
  • Rafiai H. 2011. New empirical polyaxial criterion for rock strength. Int J Rock Mech Min Sci 48: 922–931. [CrossRef] [Google Scholar]
  • Singh M, Raj A, Singh B. 2011. Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks. Int J Rock Mech Min Sci 48: 546–555. [CrossRef] [Google Scholar]
  • Sloan SW, Booker JR. 1986. Removal of singularities of Tresca and Mohr-Coulomb yield functions. Communications. In: Applied Numerical Methods 2: 173–179. [Google Scholar]
  • Sørensen ES, Clausen J, Damkilde L. 2015. Finite element implementation of the Hoek-Brown material model with general strain softening behavior. Int J Rock Mech Min Sci 78: 163–174. [Google Scholar]
  • Takahashi M, Koide H. 1989. Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 2000 m. In: Maury V, Fourmaintraux D, eds. Rock at great depth, vol. 1. Rotterdam: Balkema. pp. 19–26. [Google Scholar]
  • Wiebols G, Cook NGW. 1968. An energy criterion for the strength of rock in polyaxial compression. Int J Rock Mech Min Sci 5: 529–549. [CrossRef] [Google Scholar]
  • You MQ. 2009. True-triaxial strength criteria for rock. Int J Rock Mech Min Sci 46: 115–127. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.