Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 158, 2019
Fondations d'éoliennes offshore
Numéro d'article 5
Nombre de pages 8
DOI https://doi.org/10.1051/geotech/2019011
Publié en ligne 6 septembre 2019
  • AASHTO. 1989. Standard specifications for Highway Bridges. 14th edition. [Google Scholar]
  • ASTM D 6032-2 Standard test method for determining rock quality designation (RQD) of Rock Core. [Google Scholar]
  • Bieniawski ZT. 1989. Engineering rock mass classifications. New York: Wiley. [Google Scholar]
  • Boulon M, Plytas C, Foray P. 1985. Interface behavior prediction of the lateral shaft friction along piles and anchors. Rev Fr Geotech 34. [Google Scholar]
  • CFMS. 2019. Recommandations pour la conception et le dimensionnement des fondations d’éoliennes offshore. Disponible sur www.cfms-sols.org. [Google Scholar]
  • Cour F, Lopes Dos Santos A. 2018. Sonde monocellulaire innovante pour la réalisation d’essais d’expansion de cavité cylindrique. In : Journées nationales de géotechnique et de géologie de l’ingénieur. Champs-sur-Marne. [Google Scholar]
  • Diederichs MS, Kaiser PK. 1999. Stability of large excavations in laminated hard rock masses. Int J Rock Mech Mining Sci 36: 97–117. [CrossRef] [Google Scholar]
  • Gardner WS. 1987. Design of drilled piers in the Atlantic Piedmont. Foundations and excavations in decomposed rock of the Piedmont province. New York, UK: ASCE. pp. 62–86. [Google Scholar]
  • Hobbs NB. 1974. Factors affecting the prediction of settlements of structures on rock. Settlement of structures. Conference organised by British Geotechnical Society, Cambridge held. pp. 590–596. [Google Scholar]
  • Hoek E. 1994. Strength of rock and rock masses. ISRM News J 2(2): 4–16. [Google Scholar]
  • Hoek E, Brown ET. 1997. Practical estimates of rock mass strength. Int J Rock Mech Mining Sci Geomech 34(8): 1165–1186. [CrossRef] [Google Scholar]
  • Hoek E, Diederichs MS. 2006. Empirical estimation of rock mass modulus. Int J Rock Mech Mining Sci 43: 203–215. [CrossRef] [Google Scholar]
  • Johnston IW, Haberfield CM. 1990. Pressuremeter interpretation for weak rock. Proceedings 24th Annual Conference Engineering Group of the Geological Society, pp. 85–90. [Google Scholar]
  • Johnston IW, Lam TSK, Williams AF. 1987. Constant normal stiffness direct shear testing for socketed pile design in weak rock. Geotechnique 37: 83–89. [CrossRef] [Google Scholar]
  • Kulhawy FH, Phoon KK. 1993. Drilled shaft side resistance in clay soil to rock. Proceedings of the Conference on Des. and Perform. of Deep Found. 38. [Google Scholar]
  • Lee MH, Cho CH, Yoo HK, Known HK. 2004. A study on the surface roughness of drilled shaft into rock in Korea. In: Proceedings of the Korean Society of Geotechnical Engineering Conference. Seoul 2003. [Google Scholar]
  • Mitri HS, Edrissi R, Henning J. 1994. Finite element modeling of cablebolted stopes in hard rock ground mines. SME annual meeting. Albuquerque, USA. pp. 94–116. [Google Scholar]
  • Nam MS. 2004. Improved design for drilled shafts in rock. PhD dissertation. University of Houston. [Google Scholar]
  • Nicholson GA, Bieniawski ZT. 1990. A nonlinear deformation modulus based on rock mass classification. Int J Min Geol Eng 8(3). [Google Scholar]
  • Puech A, Quiterio-Mendoza B. 2019. Characterization of rock masses for designing drilled and grouted offshore pile foundations, Proceedings of the 17th European Conference on Soil Mechanics and Geotechnical Engineering, Reykjavik. [Google Scholar]
  • Seidel JP, Collingwood B. 2001. A new socket roughness factor for prediction of rocket socket shaft resistance. Can Geotech J 38: 138. [CrossRef] [Google Scholar]
  • Seidel JP, Haberfield CM. 1995. Towards an understanding of joint roughness. Int J Rock Mech Rock Eng. [Google Scholar]
  • Seol H, et al. 2007. Shear load transfer for rock-socketed drilled shafts based on borehole roughness and geological strength index. Int J Rock Mech Mining Sci 45: 848–861. [CrossRef] [Google Scholar]
  • Serafim JL, Pereira JP. Consideration of the geomechanical classification of Bieniawski. In: Proceedings of International symposium on Engineering Geology and Underground Construction, vol. 1. Rotterdam: A.A. Balkema, 1983, II, pp. 3–44. [Google Scholar]
  • Sonmez H, Gokceoglu C, Ulusay R. 2004. Indirect determination of the modulus of deformation of rock masses based on the GSI system. Int J Rock Mech Mining Sci 41(5): 849–857. [CrossRef] [Google Scholar]
  • Stavropoulou E, Sharma A, Dano C, Boulon M, Briffaut M, Emeriault F, Puech A. 2019. Characterization of rock grout interfaces for foundations of offshore wind turbines. Proceedings of the XVII European Conference on Soil Mechanics and Geotechnical Engineering. Reykjavik. [Google Scholar]
  • Stavropoulou E, Dano C, Boulon M, Briffaut M, Sharma A, Puech A. 2019. Résistance au cisaillement d’interfaces roche-coulis représentatives de pieux offshore. Rev Fr Geotech 158: 6. [CrossRef] [Google Scholar]
  • Williams AF. 1980. The design and performance of piles socketed into weak rock. Ph.D. Thesis. Melbourne: Monash University. [Google Scholar]
  • Zhang L, Einstein HH. 2004. Using RQD to estimate the deformation modulus of rock masses. Int J Rock Mech Mining Sci 41(2): 337–341. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.