Numéro |
Rev. Fr. Geotech.
Numéro 171, 2022
|
|
---|---|---|
Numéro d'article | 4 | |
Nombre de pages | 13 | |
DOI | https://doi.org/10.1051/geotech/2022005 | |
Publié en ligne | 21 juillet 2022 |
- AFNOR (Association Française de Normalisation). 1993. Renforcement des sols – Essai statique d'arrachement de clou soumis à un effort axial de traction – Essai à vitesse de déplacement constante. Norme NF P 94-242-1 , 13 p. [Google Scholar]
- AFNOR (Association Française de Normalisation). 2002. Roches – Essai statique d'arrachement, sous un effort axial de traction, d'un ancrage scellé dans un massif rocheux – Essai par paliers. Norme XP P 94-444, 12 p. [Google Scholar]
- AFNOR (Association Française de Normalisation). 2010. Exécution des travaux géotechniques spéciaux – Clouage. Norme NF EN 14490, 66 p. [Google Scholar]
- AFNOR (Association Française de Normalisation). 2020. Calcul géotechnique – Ouvrage de soutènement – Remblais renforcés et massifs en sol cloué. Norme NF P 94-270, 186 p. [Google Scholar]
- AFTES (Association Française des Tunnels et de l'Espace Souterrain). 2014. Technologie du boulonnage. Recommandations GT6R4F1. Tunnels et Espace Souterrains 241: 14–31. [Google Scholar]
- AFTES (Association Française des Tunnels et de l'Espace Souterrain). 2017. Conception et guide de dimensionnement du boulonnage radial en tunnel. Recommandations GT30R1F1, 70 p. [Google Scholar]
- Bai X, Zhang M, Yan N 2015. Field contrast test and mechanism analysis on anchorage performance of antifloating anchors with two different materials. China Civil Eng J 48(8): 38–59. [Google Scholar]
- Benmokrane B, Chennouf A, Mitri HS. 1995. Laboratory evaluation of cement-based grouts and grouted rock anchors. Int J Rock Mech Min Sci Geomech Abstr 32(7): 633–642. [CrossRef] [Google Scholar]
- Blanco Martín L, Tijani M, Hadj-Hassen F. 2011. A new analytical solution to the mechanical behaviour of fully grouted rockbolts subjected to pull-out tests. Constr Build Mater 25: 749–755. [CrossRef] [Google Scholar]
- Blanco Martín L. 2012. Étude théorique et expérimentale du boulonnage à ancrage réparti sous sollicitations axiales. Mémoire de thèse, MINES-ParisTech, Paris, France. [Google Scholar]
- Blanco Martin L, Tijani M, Hadj-Hassen F, Noiret A. 2013. Assessment of the bolt-grout interface behaviour of fully grouted rockbolts from laboratory experiments under axial loads. Int J Rock Mech Min Sci 63: 50–61. [CrossRef] [Google Scholar]
- Blanco Martin L, Tijani M, Hadj-Hassen F Noiret, A. 2016. Boulonnage à ancrage réparti: étude de l’interface barre-scellement sous sollicitations axiales. Rev Fr Geotech 146: 2. [CrossRef] [EDP Sciences] [Google Scholar]
- Bost M, Ho DA, Pruvost C, et al. 2018. Étude paramétrique de la résistance a l'arrachement d’un ancrage passif scellé au rocher. In: Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, JNGG 2018, Champs-sur-Marne, France, 8 p. [Google Scholar]
- Cai Y, Esaki T, Jiang Y. 2004a. A rock bolt and rock mass interaction model. Int J Rock Mech Min Sci 41(7): 1055–1067. [CrossRef] [Google Scholar]
- Cai Y, Esaki T, Jiang Y. 2004b. An analytical model to predict axial load in grouted rock bolt for soft rock tunnelling. Tunn Undergr Space Technol 19(6): 607–618. [CrossRef] [Google Scholar]
- Carranza-Torres C. 2009. Analytical and numerical study of the mechanics of rockbolt reinforcement around tunnels in rock masses. Rock Mech Rock Eng 42: 175–228. [CrossRef] [Google Scholar]
- Chen WW, Ren FF. 2008. Mechanical behavior of the bamboo-steel composite rockbolt. Report 2006BAK30B02. Dunhuang Academy & Cultural Relics Protection Center of Lanzhou University. [Google Scholar]
- Chen J, Saydam S, Hagan PC. 2015. An analytical model of the load transfer behavior of fully grouted cable bolts. Constr Build Mater 101: 1006–1015. [CrossRef] [Google Scholar]
- Chen J, Yang S, Zhao H, Zhang J, He F, Yin S. 2019. The analytical approach to evaluate the load-displacement relationship of rock bolts. Adv Civil Eng 2019: 19. [Google Scholar]
- Chen J, He F, Zhang S. 2020. A study of the load transfer behavior of fully grouted rock bolts with analytical modelling. Int J Min Sci Technol 30: 105–109. [CrossRef] [Google Scholar]
- Clouterre. 1991. Recommandations pour la conception, le calcul, l'exécution et le contrôle des soutènements réalisés par clouage des sols. Presses de l'École Nationale des Ponts et Chaussées, 268 p. [Google Scholar]
- England M. 2012. On the subject of piles in tension. Proceeding of Conference on Full-scale Testing and Foundation Design, GeoCongress 2012, Oakland, California, pp. 680–693. [Google Scholar]
- Farmer IW. 1975. Stress distribution along a resin grouted rock anchor. Int J Rock Mech Min Sci Geomech Abstr 12(11): 347–351. [CrossRef] [Google Scholar]
- Frank R, Zhao SR 1982. Estimation des paramètres pressiométriques de l'enfoncement sous charge axiale de pieux forés dans les sols fins. Bulletin de liaison des laboratoires des Ponts et Chaussées 119: 17–24. [Google Scholar]
- Freeman TJ. 1978. The behavior of fully-bonded rock bolts in the Kielder experimental tunnel. Tunn Tunn Int 10(5): 37–40. [Google Scholar]
- Guan Z, Jiang Y, Tanabasi Y, Huang H 2007. Reinforcement mechanics of passive bolts in conventional tunnelling. Int J Rock Mech Min Sci 44: 625–636. [CrossRef] [Google Scholar]
- Indraratna B, Kaiser PK. 1990. Analytical model for the design of grouted rock bolts. Int J Numer Anal Meth Geomech 14(4): 227–251. [CrossRef] [Google Scholar]
- IMSL. 2014. International Mathematics and Statistics Library User's Manual, Version 7.0. Rogue Wave Software, Inc. [Google Scholar]
- Jalalifar H. 2011. An analytical solution to predict axial load along fully grouted bolts in an elasto-plastic rock mass. J South Afr Inst Min Metall 111: 809–814. [Google Scholar]
- Jiang Y, Tanabashi Y, Cai Y, Esaki T. 2004. Analytical model for grouted rock bolts. Rep Fac Eng, Nagasaki Univ 34(62): 97–102. [Google Scholar]
- Li C, Stillborg B 1999. Analytical models for rock bolts. Int J Rock Mech Min Sci 36(8): 1013–1029. [CrossRef] [Google Scholar]
- Liu G, Xiao M, Chen J, Zhou H. 2017. Study on mechanical characteristics of fully grouted rock bolts for underground caverns under seismic loads. Hindawi, Math Probl Eng 2017: 12. [Google Scholar]
- Ma S, Nemcik J, Aziz N. 2013. An analytical model of fully grouted rock bolts subjected to tensile load. Constr Build Mater 49: 519–526. [CrossRef] [Google Scholar]
- Moayed RZ, Namaei A. 2020. Evaluation of the pullout resistance of soil nails in Tehran alluvium by considering the overburden pressure effect. Geotech Geol Eng 38: 743–754. [CrossRef] [Google Scholar]
- Nguyen QP, Nguyen VM, Nguyen KT. 2018. A new design concept of fully grouted rock bolts in underground construction. Earth Environ Sci 143: 012017. [Google Scholar]
- Oreste PP, Peila D. 1996. Radial passive rockbolting in tunnelling design with a new convergence-confinement model. Int J Rock Mech Min Sci Geomech Abstr 33(5): 443–454. [CrossRef] [Google Scholar]
- Oreste P 2008. Distinct analysis of fully grouted bolts around a circular tunnel considering the congruence of displacements between the bar and the rock. Int J Rock Mech Min Sci 45(7): 1052–1067. [CrossRef] [Google Scholar]
- Ranjbarnia M, Fahimifar A, Oreste P. 2016. New analytical approaches for evaluating the performance of systematic pre-tensioned fully grouted rockbolts in tunnel stabilization. Arch Min Sci 61(4): 823–852. [Google Scholar]
- Ren FF, Yang ZJ, Chen JF, Chen WW. 2010. An analytical analysis of the full range behaviour of grouted rockbolts based on a tri-linear bond-slip model. Constr Build Mater 24(3): 361–370. [CrossRef] [Google Scholar]
- Robit P, Rajot JP, Limam A. 2014. Paroi clouée AD/OC – Une alternative au béton projeté qui renforce le drainage et limite les émissions de CO2 . Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, JNGG 2014, Beauvais, France, 10 p. [Google Scholar]
- Rong G, Zhu HC, Zhou CB. 2004. Testing study on working mechanism of fully grouted bolts of thread steel and smooth steel. Chin J Rock Mech Eng 23(3): 469–475. [Google Scholar]
- Salcher M, Bertuzzi R. 2018. Results of pull tests of rock bolts and cable bolts in Sydney sandstone and shale. Tunn Undergr Space Technol 74: 60–70. [CrossRef] [Google Scholar]
- Schlosser F, Guilloux A. 1981. Le frottement dans les sols. Rev Fr Geotech 16: 65–77. [CrossRef] [EDP Sciences] [Google Scholar]
- Serratrice JF. 2022a. Une interprétation du comportement des boulons à ancrage reparti sollicités en traction dans les sols. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, JNGG 2022, Lyon, France, 8 p. [Google Scholar]
- Serratrice JF. 2022b. Une interprétation du comportement des boulons à ancrage reparti sollicités en traction pour application en tunnel. Tunnels et Espace Souterrain, à paraître. [Google Scholar]
- Sivakumar Babu GL, Singh VP. 2010. Soil nails field pullout testing: evaluation and applications. Int J Geotech Eng 4: 3–21. [Google Scholar]
- Stillborg B. 1984. Experimental investigation of steel cables for rock reinforcement in hard rock. Lulea, Sweden: Lulea University. [Google Scholar]
- Stille H, Holmberg M, Nord G. 1989. Support of weak rock with grouted bolts and shotcrete. Int J Rock Mech Min Sci Geomech Abstr 26(1): 99–113. [CrossRef] [Google Scholar]
- Thevenin I, Jahangir E, Hadj Hassen F, Schleifer J, Rodriguez P. 2016. Analyse expérimentale de l'effet du confinement sur l'arrachement des boulons de front. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, JNGG 2016, Nancy, pp. 770–777. [Google Scholar]
- Wang XN, Ye R, Zhou FJ. 2001. Proposals for the selection of failure criteria in soil float-resisting achor rod test. J Geol Hazards Environ Preserv 12(3): 73–77. [Google Scholar]
- Wang M, Zhang X, Tong J, Yi W, Wang Z, Liu D. 2020. A new semi-analytical method for elasto-plastic analysis of a deep circular tunnel reinforced by fully grouted passive bolts. Appl Sci 10: 4402. [CrossRef] [Google Scholar]
- Wen JZ, Su HT, Tan XQ, Ning DB, Zhang CY 2014. An analytical model for fully grouted rock bolts in soft rock tunnel. EJGE 19: 2829–2839. [Google Scholar]
- Xiao SJ, Chen CF. 2008. Mechanical mechanism analysis of tension type anchor based on shear displacement method. J Centr South Univ Technol 15(1): 106–111. [CrossRef] [Google Scholar]
- Zhang LL, Zhang LM, Tang WH. 2009. Uncertainties of field pullout resistance of soil nails. J Geotech Geoenviron Eng 135(7): 956–972. [Google Scholar]
- Zhao K, You CA, Du W, Lv XP, Li YY. 2014. Pullout mechanism and failure characteristics of soil anchor. EJGE 19: 17701–17711. [Google Scholar]
- Zheng B, Zhang J, Feng T, Cao M 2020. Predicting the ultimate bearing capacity of bolts with an optimized function model. Hindawi Publishing Corporation, Adv Civil Eng 2020: ID 4934260, 9 p. [Google Scholar]
- Zhu HH, Yin JH, Yeung AT, Jin W. 2011. Field pullout testing and performance evaluation of GFRP soil nails. J Geotech Geoenviron Eng 137(7): 633–642. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.