Accès gratuit
Numéro |
Rev. Fr. Geotech.
Numéro 172, 2022
Jeunes Chercheurs
|
|
---|---|---|
Numéro d'article | 2 | |
Nombre de pages | 15 | |
DOI | https://doi.org/10.1051/geotech/2022008 | |
Publié en ligne | 6 septembre 2022 |
- Alzoubi MA, et al. 2020. Artificial ground freezing: A review of thermal and hydraulic aspects. Tunnel Undergr Space Technol 104. [Google Scholar]
- Archer DG, Carter RW. 2000. Thermodynamic properties of the NaCl + H2O system. 4. Heat capacities of H2O and NaCl (aq) in cold-stable and supercooled states. J Phys Chem B 104: 8563–8584. [CrossRef] [Google Scholar]
- Bishop S, Goddard G, Mainville A, Paulsen E. 2012. Cigar Lake Project Northern Saskatchewan. Canada: Technical report, Cameco Corporation. [Google Scholar]
- Bishop C, Mainville A, Yesnik L. 2016. Cigar Lake Operation Northern Saskatchewan, Canada. Canada: Technical report, Cameco Corporation. [Google Scholar]
- Coussy O. 2004. Poromechanics. s.l.: John Wiley & Sons. [Google Scholar]
- Feistel R, Wagner W. 2006. A new equation of state for H2O ice Ih. J Phys Chem Ref Data 35: 1021–1047. [CrossRef] [Google Scholar]
- Hassanizadeh SM, Gray WG. 1990. Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv Water Resour 13: 169–186. [CrossRef] [Google Scholar]
- Marwan A, Zhou M-M, Abdelrehim MZ, Meschke G. 2016. Optimization of artificial ground freezing in tunneling in the presence of seepage flow. Comput Geotech 75: 112–125. [CrossRef] [Google Scholar]
- Mualem Y. 1978. Hydraulic conductivity of unsaturated porous media: generalized macroscopic approach. Water Resour Res 14: 325–334. [CrossRef] [Google Scholar]
- Newman G, Newman L, Chapman D, Harbicht T. 2011. Artificial ground freezing: an environmental best practice at Cameco’s Uranium Mining Operations in Northern Saskatchewan, Canada. Rüde, Freund# Wolkersdorfer (Eds), pp. 113–118. [Google Scholar]
- Nishimura S, Gens A, Olivella S, Jardine R. 2009. THM-coupled finite element analysis of frozen soil: formulation and application. Geotechnique 59: 159. [CrossRef] [Google Scholar]
- Pimentel E, Papakonstantinou S, Anagnostou G. 2012. Numerical interpretation of temperature distributions from three ground freezing applications in urban tunnelling. Tunnel Undergr Space Technol 28: 57–69. [CrossRef] [Google Scholar]
- Quintard M, Whitaker S. 1994. Transport in ordered and disordered porous media II: Generalized volume averaging. Transport Porous Media 14: 179–206. [CrossRef] [Google Scholar]
- Rempel AW, Wettlaufer J, Worster MG. 2004. Premelting dynamics in a continuum model of frost heave. J Fluid Mech 498: 227–244. [CrossRef] [Google Scholar]
- Rouabhi A. 2019. Problèmes de thermodynamique et de thermo-hydro-mécanique associés à l’exploitation du sous-sol. Paris : Habilitation à diriger des recherches-Sorbonne Université. [Google Scholar]
- Rouabhi A, Tijani M. 2017. Modélisation thermo-hydraulique de la congélation artificielle des terrains avec prise en compte de la salinité de l’eau. In: Gasc-Barbier M, Merrien-Soukatchoff V, Berest P, eds. Manuel de mécanique des roches. Thermomécanique des roches. Tome V. Paris : Presses des Mines, Collection sciences de la terre et de l’environnement, pp. 305–316. [Google Scholar]
- Russo G, Corbo A, Cavuoto F, Autuori S. 2015. Artificial ground freezing to excavate a tunnel in sandy soil. Measurements and back analysis. Tunnel Undergr Space Technol 50: 226–238. [CrossRef] [Google Scholar]
- Tounsi H. 2019. Modélisation THMC de la congélation artificielle des terrains : application à la mine de Cigar Lake. Thèse de doctorat-Paris Sciences et Lettres, Paris. [Google Scholar]
- Tounsi H, Rouabhi A, Jahangir E. 2020. Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid. Comput Geotech 119. [Google Scholar]
- Vitel M. 2015. Modélisation thermo-hydraulique de la congélation artificielle des terrains. Thèse de doctorat-MINES ParisTech, Paris. [Google Scholar]
- Vitel M, Rouabhi A, Tijani M, Guérin F. 2016a. Modeling heat and mass transfer during ground freezing subjected to high seepage velocities. Comput Geotech 73: 1–15. [CrossRef] [Google Scholar]
- Vitel M, Rouabhi A, Tijani M, Guérin F. 2016b. Thermo-hydraulic modeling of artificial ground freezing: Application to an underground mine in fractured sandstone. Comput Geotech 75: 80–92. [CrossRef] [Google Scholar]
- Wagner W, Pruß A. 2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31: 387–535. [CrossRef] [Google Scholar]
- Wettlaufer J, Worster MG. 2006. Premelting dynamics. Annu Rev Fluid Mech 38: 427–452. [CrossRef] [Google Scholar]
- Yan Q, Xu Y, Yang W, Geng P. 2017. Nonlinear transient analysis of temperature fields in an AGF project used for a cross-passage tunnel in the Suzhou Metro. KSCE J Civil Eng 1–11. [Google Scholar]
- Yun X, Tang B, Greg M, Brian M, Brian M. 2017. Radon bearing water protection in underground uranium mining - A case study. Int J Min Sci Technol 27: 599–603. [CrossRef] [Google Scholar]
- Zhou J, Zhao W, Tang Y. 2021. Practical prediction method on frost heave of soft clay in artificial ground freezing with field experiment. Tunnel Undergr Space Technol 107. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.