Free Access
Issue
Rev. Fr. Geotech.
Number 172, 2022
Jeunes Chercheurs
Article Number 2
Number of page(s) 15
DOI https://doi.org/10.1051/geotech/2022008
Published online 06 September 2022
  • Alzoubi MA, et al. 2020. Artificial ground freezing: A review of thermal and hydraulic aspects. Tunnel Undergr Space Technol 104. [Google Scholar]
  • Archer DG, Carter RW. 2000. Thermodynamic properties of the NaCl + H2O system. 4. Heat capacities of H2O and NaCl (aq) in cold-stable and supercooled states. J Phys Chem B 104: 8563–8584. [CrossRef] [Google Scholar]
  • Bishop S, Goddard G, Mainville A, Paulsen E. 2012. Cigar Lake Project Northern Saskatchewan. Canada: Technical report, Cameco Corporation. [Google Scholar]
  • Bishop C, Mainville A, Yesnik L. 2016. Cigar Lake Operation Northern Saskatchewan, Canada. Canada: Technical report, Cameco Corporation. [Google Scholar]
  • Coussy O. 2004. Poromechanics. s.l.: John Wiley & Sons. [Google Scholar]
  • Feistel R, Wagner W. 2006. A new equation of state for H2O ice Ih. J Phys Chem Ref Data 35: 1021–1047. [CrossRef] [Google Scholar]
  • Hassanizadeh SM, Gray WG. 1990. Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv Water Resour 13: 169–186. [CrossRef] [Google Scholar]
  • Marwan A, Zhou M-M, Abdelrehim MZ, Meschke G. 2016. Optimization of artificial ground freezing in tunneling in the presence of seepage flow. Comput Geotech 75: 112–125. [CrossRef] [Google Scholar]
  • Mualem Y. 1978. Hydraulic conductivity of unsaturated porous media: generalized macroscopic approach. Water Resour Res 14: 325–334. [CrossRef] [Google Scholar]
  • Newman G, Newman L, Chapman D, Harbicht T. 2011. Artificial ground freezing: an environmental best practice at Cameco’s Uranium Mining Operations in Northern Saskatchewan, Canada. Rüde, Freund# Wolkersdorfer (Eds), pp. 113–118. [Google Scholar]
  • Nishimura S, Gens A, Olivella S, Jardine R. 2009. THM-coupled finite element analysis of frozen soil: formulation and application. Geotechnique 59: 159. [CrossRef] [Google Scholar]
  • Pimentel E, Papakonstantinou S, Anagnostou G. 2012. Numerical interpretation of temperature distributions from three ground freezing applications in urban tunnelling. Tunnel Undergr Space Technol 28: 57–69. [CrossRef] [Google Scholar]
  • Quintard M, Whitaker S. 1994. Transport in ordered and disordered porous media II: Generalized volume averaging. Transport Porous Media 14: 179–206. [CrossRef] [Google Scholar]
  • Rempel AW, Wettlaufer J, Worster MG. 2004. Premelting dynamics in a continuum model of frost heave. J Fluid Mech 498: 227–244. [CrossRef] [Google Scholar]
  • Rouabhi A. 2019. Problèmes de thermodynamique et de thermo-hydro-mécanique associés à l’exploitation du sous-sol. Paris : Habilitation à diriger des recherches-Sorbonne Université. [Google Scholar]
  • Rouabhi A, Tijani M. 2017. Modélisation thermo-hydraulique de la congélation artificielle des terrains avec prise en compte de la salinité de l’eau. In: Gasc-Barbier M, Merrien-Soukatchoff V, Berest P, eds. Manuel de mécanique des roches. Thermomécanique des roches. Tome V. Paris : Presses des Mines, Collection sciences de la terre et de l’environnement, pp. 305–316. [Google Scholar]
  • Russo G, Corbo A, Cavuoto F, Autuori S. 2015. Artificial ground freezing to excavate a tunnel in sandy soil. Measurements and back analysis. Tunnel Undergr Space Technol 50: 226–238. [CrossRef] [Google Scholar]
  • Tounsi H. 2019. Modélisation THMC de la congélation artificielle des terrains : application à la mine de Cigar Lake. Thèse de doctorat-Paris Sciences et Lettres, Paris. [Google Scholar]
  • Tounsi H, Rouabhi A, Jahangir E. 2020. Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid. Comput Geotech 119. [Google Scholar]
  • Vitel M. 2015. Modélisation thermo-hydraulique de la congélation artificielle des terrains. Thèse de doctorat-MINES ParisTech, Paris. [Google Scholar]
  • Vitel M, Rouabhi A, Tijani M, Guérin F. 2016a. Modeling heat and mass transfer during ground freezing subjected to high seepage velocities. Comput Geotech 73: 1–15. [CrossRef] [Google Scholar]
  • Vitel M, Rouabhi A, Tijani M, Guérin F. 2016b. Thermo-hydraulic modeling of artificial ground freezing: Application to an underground mine in fractured sandstone. Comput Geotech 75: 80–92. [CrossRef] [Google Scholar]
  • Wagner W, Pruß A. 2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31: 387–535. [CrossRef] [Google Scholar]
  • Wettlaufer J, Worster MG. 2006. Premelting dynamics. Annu Rev Fluid Mech 38: 427–452. [CrossRef] [Google Scholar]
  • Yan Q, Xu Y, Yang W, Geng P. 2017. Nonlinear transient analysis of temperature fields in an AGF project used for a cross-passage tunnel in the Suzhou Metro. KSCE J Civil Eng 1–11. [Google Scholar]
  • Yun X, Tang B, Greg M, Brian M, Brian M. 2017. Radon bearing water protection in underground uranium mining - A case study. Int J Min Sci Technol 27: 599–603. [CrossRef] [Google Scholar]
  • Zhou J, Zhao W, Tang Y. 2021. Practical prediction method on frost heave of soft clay in artificial ground freezing with field experiment. Tunnel Undergr Space Technol 107. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.