Free Access
Issue
Rev. Fr. Geotech.
Number 172, 2022
Jeunes Chercheurs
Article Number 1
Number of page(s) 19
DOI https://doi.org/10.1051/geotech/2022007
Published online 05 September 2022
  • Abuel-Naga HM, Bergado DT, Bouazza A, Pender M. 2009. Thermomechanical model for saturated clays. Géotechnique 59(3): 273–278. [CrossRef] [Google Scholar]
  • Adam D, Markiewicz R. 2009. Energy from earth-coupled structures, foundations, tunnels and sewers. Géotechnique 59(3): 229–236. [CrossRef] [Google Scholar]
  • Amatya BL, Soga K, Bourne-Webb PJ, Laloui L. 2012. Thermo-mechanical performance of energy piles. Géotechnique 62(6): 503–519. [CrossRef] [Google Scholar]
  • Andersland OB, Ladanyi B. 2013. An introduction to frozen ground engineering. Springer Science & Business Media. [Google Scholar]
  • Badinier T, de Sauvage J, Szymkiewicz F, Benitez BR. 2020. Groupe de pieux thermoactifs dans un écoulement aquifère : modélisation physique et numérique. In: JNGG 2020, Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, pp. 8. [Google Scholar]
  • Borely C, Okyay US. 2017. Structure énergétiques : interaction Pieu-Sol-Structure. In: Journée technique « Guide Géostructures énergétiques ». [Google Scholar]
  • Bourne-Webb PJ, Amatya B, Soga K, Amis T, Davidson C, Payne P. 2009. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique 59(3): 237–248. [CrossRef] [Google Scholar]
  • Bourne-Webb P, Burlon S, Javid S, Kuerten S, Loveridge F. 2016. Analysis and design methods for energy geostructures. Renew Sustain Energy 65: 402–419. [CrossRef] [Google Scholar]
  • Brandl H. 2006. Energy foundations and other thermo-active ground structures. Géotechnique 56(2): 81–122. [CrossRef] [Google Scholar]
  • Burghignoli A, Desideri A, Miliziano S. 2000. A laboratory study on the thermomechanical behaviour of clayey soils. Can Geotech J 37(4): 764–780. [CrossRef] [Google Scholar]
  • Campanella RG, Mitchell JK. 1968. Influence of temperaturevariations on soil behavior. J Soil Mech Found Div, ASCE 94(3): 709–734. [CrossRef] [Google Scholar]
  • Cekerevac C, Laloui L. 2004. Experimental study of thermal effects on the mechanical behaviour of a clay. Int J Num Anal Meth Geomech 28(3): 209–228. [CrossRef] [Google Scholar]
  • CFMS, Syntec. 2017. Recommandations pour la conception, le dimensionnement et la mise en œuvre des géostructures thermiques. Rev fr Geotech 149. [Google Scholar]
  • Dalla Santa G, Galgaro A, Sassi R, et al. 2020, An updated ground thermal properties database for GSHP applications. Geothermics 85: 101758. [CrossRef] [Google Scholar]
  • De Moel M, Bach PM, Bouazza A, Singh RM, Sun JO. 2010. Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia. Renew Sustain Energy Rev 14(9): 2683–2696. [CrossRef] [Google Scholar]
  • Delerablée Y. 2019. Intégration thermique et mécanique des géostructures thermiques : de l’échelle du bâtiment à l’échelle de la cité. Thèse de doctorat, Université Paris Est. [Google Scholar]
  • Delerablée Y, Habert J, Burlon S. 2020. Géostructures thermiques – Présentation du fonctionnement thermique et mécanique. Techniques de l’ingénieur: C264 V1. [Google Scholar]
  • Di Donna A, Barla M, Amis T. 2017. Energy geostructures: Analysis from research and systems installed around the World. In: DFI 42nd Annual Conference on Deep Foundations. [Google Scholar]
  • Di Donna A, Emeriault F, Demongodin L, Gobichon JF. 2020. Aspects géotechniques et énergétiques des géostructures thermoactives : application à un cas d’étude réel. Rev fr Géotech 164: 4. [CrossRef] [EDP Sciences] [Google Scholar]
  • Fadejev J, Simson R, Kurnitski J, Haghighat F. 2017. A review on energy piles design, sizing and modelling. Energy 122: 390–407. [CrossRef] [Google Scholar]
  • Frank R, Zhao SR. 1982. Estimation par les paramètres pressiométriques de l’enfoncement sous charge axiale de pieux forés dans des sols fins. Bulletin de Liaison des Laboratoires des Ponts et Chaussées 119: 387–421. [Google Scholar]
  • Fromentin A, Pahud D, Jaquier C, Morath M. 1997. Recommandations pour la réalisation d’installations avec pieux échangeurs. Empfehlungen für Energiepfahlsysteme. Rapport final. Rapport d’étude n°120.104. Lausanne, Suisse: Office Fédéral de l’Énergie, 79 p. [Google Scholar]
  • Garnier J, Gaudin C, Springman SM, et al. 2007. Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. Int J Phys Model Geotech 7(3): 01–23. [Google Scholar]
  • Goode, III. JC, McCartney JS. 2015. Centrifuge modeling of end-restraint effects in energy foundations. J Geotech Geoenviron Eng 141(8): 04015034. [CrossRef] [Google Scholar]
  • Humbert P, Dubouchet A, Fezans G, Remaud D. 2005. CESAR-LCPC, un progiciel de calcul dédié au génie civil. Bulletin des laboratoires des ponts et chaussées 256: 7–37. [Google Scholar]
  • Jannot Y. 2012. Transferts thermiques. Nancy: École des Mines. [Google Scholar]
  • Khalifa A, Garnier J, Thomas P, Rault G. 2000. Scaling laws of water flow in centrifuge models. In: Int. Symp. on Physical Modelling and Testing in Environmental Geotechnics, La Baule. [Google Scholar]
  • Lahoori M, Jannot Y, Rosin-Paumier S, Boukelia A, Masrouri F. 2020. Measurement of the thermal properties of unsaturated compacted soil by the transfer function estimation method. Appl Therm Eng 167: 114795. [CrossRef] [Google Scholar]
  • Laloui L, Nuth M, Vulliet L. 2006. Experimental and numerical investigations of the behaviour of a heat exchanger pile. Int J Numer Anal Meth Geomech 30(8): 763–781. [CrossRef] [Google Scholar]
  • Leung AK, Vitali D, Ma L, Zhao R. 2019. Innovations in the centrifuge modelling of energy pile behaviour in unsaturated soil. In: Proceedings of the 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering (YMPG11). Southeast Asian Geotechnical Society. [Google Scholar]
  • Loveridge F, Powrie W. 2013. Temperature response functions (G-functions) for single pile heat exchangers. Energy 57: 554–564. [CrossRef] [Google Scholar]
  • Loveridge F, Powrie W, Nicholson D. 2014. Comparison of two different models for pile thermal response test interpretation. Acta Geotech 9(3): 367–384. [CrossRef] [Google Scholar]
  • Maghsoodi S. 2020. Thermo-mechanical behavior of soil-structure interface under monotonic and cyclic loads in the context of energy geostructures. Thèse de doctorat, Université de Lorraine. [Google Scholar]
  • Maragna C, Loveridge F. 2018. Interprétation de tests de réponse thermique et dimensionnement de pieux géothermiques. In: JNGG 2018, Marne-La-Vallée, 8 p. [Google Scholar]
  • McCartney JS, Murphy KD. 2012. Strain distributions in full-scale energy foundations (DFI Young Professor Paper Competition 2012). DFI Journal-The Journal of the Deep Foundations Institute 6(2): 26–38. [CrossRef] [Google Scholar]
  • Mestat P. 2005. CESAR-LCPC. Version standard. Référentiel théorique. Module DTNL. 6e ed. [Google Scholar]
  • Mroueh H, Habert J, Rammal D. 2018. Design charts for geothermal piles under various thermo-mechanical conditions. ce/papers 2(2–3): 181–190. [CrossRef] [Google Scholar]
  • Nejat P, Jomehzadeh F, Taheri MM, Gohari M, Majid MZA. 2015. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew Sustain Energy Rev 43: 843–862. [CrossRef] [Google Scholar]
  • Ng CWW, Gunawan A, Shi C, Ma QJ, Liu HL. 2016. Centrifuge modelling of displacement and replacement energy piles constructed in saturated sand: a comparative study. Geotech Lett 6(1): 34–38. [CrossRef] [Google Scholar]
  • Ng CWW, Ma QJ. 2019. Energy pile group subjected to non-symmetrical cyclic thermal loading in centrifuge. Geotech Lett 9(3): 173–177. [CrossRef] [Google Scholar]
  • Pahud D. 2002. Geothermal energy and heat storage. SUPSI–DCT–LEEE Laboratorio di Energia, Ecologia ed Economia, pp. 1–133. [Google Scholar]
  • Peltier MMV. 2018. Évaluation du potentiel thermique de la ligne de métro M3 de Lausanne (No. STUDENT). [Google Scholar]
  • Rotta Loria AF, Laloui L. 2017. The equivalent pier method for energy pile groups. Geotechnique 67(8): 691–702. [CrossRef] [Google Scholar]
  • Russo SL, Gnavi L, Roccia E, Taddia G, Verda V. 2014. Groundwater Heat Pump (GWHP) system modeling and Thermal Affected Zone (TAZ) prediction reliability: Influence of temporal variations in flow discharge and injection temperature. Geothermics 51: 103–112. [CrossRef] [Google Scholar]
  • Salençon J. 2002. Mécanique des milieux continus – Tome 2 – Thermoélasticité. Éditions de l’École Polytechnique. [Google Scholar]
  • Sauvage J de, Benitez BR, Szymkiewicz F, Badinier T. 2020. Group effects in urban shallow geothermal energy. In: E3S Web of Conferences (Vol. 205, p. 05017). EDP Sciences. [Google Scholar]
  • Staffell I, Brett D, Brandon N, Hawkes A. 2012. A review of domestic heat pumps. Energy & Environmental Science 5(11): 9291–9306. [CrossRef] [Google Scholar]
  • Stewart MA, McCartney JS. 2012. Strain distributions in centrifuge model energy foundations. In: Geocongress 2012: state of the art and practice in geotechnical engineering, pp. 4376–4385. [CrossRef] [Google Scholar]
  • Suryatriyastuti ME, Burlon S, Mroueh H. 2016. On the understanding of cyclic interaction mechanisms in an energy pile group. Int J Numer Anal Meth Geomech 40(1): 3–24. [CrossRef] [Google Scholar]
  • Vasilescu AR. 2019. Design and execution of energy piles: Validation by in-situ and laboratory experiments. Thèse de doctorat, École centrale de Nantes. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.