Accès gratuit
Numéro |
Rev. Fr. Geotech.
Numéro 175, 2023
|
|
---|---|---|
Numéro d'article | 3 | |
Nombre de pages | 15 | |
DOI | https://doi.org/10.1051/geotech/2023010 | |
Publié en ligne | 23 octobre 2023 |
- Andrus RD, Stokoe KH. 2000. Liquefaction resistance of soils from shear-wave velocity. J Geotech Geoenviron Eng 126(11): 1015–1025. [CrossRef] [Google Scholar]
- Atkinson JH. 2007. The mechanics of soils and foundations. London: Taylor & Francis. [Google Scholar]
- Been K Jefferies MG. 1985. A state parameter for sands. Géotechnique 35(2): 99–112. [CrossRef] [Google Scholar]
- Bray JD, Sancio RB. 2006. Assessment of the liquefaction susceptibility of fine-grained soils. J Geotech Geoenviron Eng 132(9): 1165–1177. [CrossRef] [Google Scholar]
- Briaud JL. 2013. The Pressuremeter Test: expanding its use. Menard Lecture, ISSMGE. [Google Scholar]
- Burland JB. 1990. On the compressibility and shear strength of natural clays. Géotechnique 40(3): 329–378. [CrossRef] [Google Scholar]
- Burns SE, Mayne PW. 1996. Small- and high-strain measurements of in-situ soil properties using the seismic cone penetrometer. Washington, D.C.: Transportation Research Record 1548, pp. 81–87. [Google Scholar]
- Bustamante M, Frank R. 1999. Current French design practice for axially loaded piles. Ground Eng: 38–44. [Google Scholar]
- Butcher AP, Campanella RG, Kaynia AM, Massarsch KR. 2005. Seismic downhole procedure to measure shear wave velocity − a quick guideline. Prepared by ISSMGE T C10: Geophysical Testing in Geotechnical Engineering. In: XVIth ICSMGE, Osaka. [Google Scholar]
- Campanella RG, Robertson PK. 1982. State of the art in In-situ testing of soils: developments since 1978. In: Proceedings of Engineering Foundation Conference on Updating Subsurface Sampling of Soils and Rocks and Their In-situ Testing. Santa Barbara, California, January 1982, pp. 245–267. [Google Scholar]
- Darendeli MB. 2001. Development of a new family of normalized modulus reduction and material damping curves. PhD Dissertation. University of Texas. [Google Scholar]
- DeJong JT, Randolph M. 2014. Influence of partial consolidation during cone penetration on estimated soil behaviour type and pore pressure dissipation measurements. J Geotech Geoenviron Eng ASCE 138(7): 777–788. [Google Scholar]
- Eslaamizaad S, Robertson PK. 1996. Seismic cone penetration test to identify cemented sands. In: Proceedings of the 49th Canadian Geotechnical Conference. St. John’s, Newfoundland, September, pp. 352–360. [Google Scholar]
- Fahey M. 1998. Deformation and in-situ stress measurement. In: Geotechnical Site Characterization, Vol. 1 (Proc. ISC-1, Atlanta ), Balkema, Rotterdam, pp. 49–68. [Google Scholar]
- Gibson RE, Anderson WF. 1961. In situ measurement of soil properties with the pressuremeter. Civil Eng Public Works Rev 56: 615–618. [Google Scholar]
- Hashash YMA, Musgrove MI, Harmon JA, Groholski DR, Phillips CA, Park D. 2015. DEEPSOIL 6.1, User Manual. Dept Civil Engrg, Univ. Illinois-Urbana. [Google Scholar]
- Idriss IM, Boulanger RW. 2008. Soil liquefaction during earthquakes. Monograph MNO-12. Oakland, CA: Earthquake Engineering Re search Institute, 261 p. [Google Scholar]
- Jamiolkowski M. 2012. Role of geophysical testing in geotechnical site characterization. DeMello Lecture, Soils and Rocks, São Paulo, Brazil, 35 (2). [Google Scholar]
- Kayen R, Moss SE, Thompson EM, et al. 2013. Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenviron Eng 139(3): 407–419. [CrossRef] [Google Scholar]
- Ku T, Mayne PW, Cargill E. 2013. Continuous interval shear wave velocity profiling by auto-source and seismic cone tests. Can Geotech J 50(2): 382–390. [CrossRef] [Google Scholar]
- Lacasse S, Nadim F, Liu ZQ, Eidsvig UK, Le TMH, Lin CG. 2019. Risk assessments and dams. In: Proceedings of the XVII ECSMGE, Reykjavik. [Google Scholar]
- Leroueil S. 1992. A framework for the mechanical behavior of structured soils, from soft clays to weak rocks. In: Proc. US-Brazil NSF Geotechnical Workshop on Applicability of Classical Soil Mechanics Principles to Structured Soils, Belo Horizonte, pp. 107–128. [Google Scholar]
- Leroueil S, Hight DW. 2003. Behaviour and properties of natural soils and soft rocks. In: Tan, et al., ed. Characterisation and engineering properties of natural soils. Swets and Zeitlinger, pp. 29–253. [Google Scholar]
- Lunne T, Robertson PK, Powell JJM. 1997. Cone penetration testing in geotechnical practice. New York: Blackie Academic, EF Spon/Routledge Publ., 312 p. [Google Scholar]
- Marchetti D. 2022. Short course notes. Vancouver, BC [Google Scholar]
- Massarsch R. 1991. Deep soil compaction using vibratory probes. In: Bachus RC, ed. American Society for Testing and Material ASTM, Symposium on Design, Construction, and Testing of Deep Foundation Improvement: Stone Columns and Related Techniques. Philadelphia: ASTM Special Technical Publication, STP 1089, pp. 297–319. [Google Scholar]
- Mayne PW. 2000. Enhanced geotechnical site characterization by seismic piezocone penetration test. Invited lecture. In: Fourth International Geotechnical Conference. Cairo University, pp. 95–120. [Google Scholar]
- Mayne PW. 2005. Integrated ground behavior: in-situ and lab tests. In: Deformation characteristics of geomaterials, vol. 2 (Proc. Lyon ). London: Taylor & Francis, pp. 155–177. [Google Scholar]
- Mayne PW. 2014. Interpretation of geotechnical parameters from seismic piezocone tests. In: Proceedings of 3rd International Symposium on Cone Penetration Testing, CPT14. Las Vegas, Nevada: Gregg Drilling & Testing, Inc. Available from www.cpt14.com. [Google Scholar]
- Mayne PW, Peuchen J. 2012. Unit weight trends with cone resistance in soft to firm clay. Geotechnical and Geophysical Site Characterization, ISC’4. Brazil: Coutinho and Mayne; Taylor and Francis. [Google Scholar]
- Mayne PW, McGillivray AV. 2008. Improved shear wave measurements using autoseis sources. In: Deformation characteristics of geomaterials, vol. 2. Ed. Burns, Mayne, & Santamarina. [Google Scholar]
- Mayne PW, Woeller DJ. 2008. O-cell response using elastic pile and seismic piezocone tests. In: Brown MJ, Bransby MF, Brennan AJ, Knappett JA, eds. Proceedings of the Second British Geotechnical Association International Conference of Foundations − ICOF 2008, Dundee, Scotland. UK: HIS BRE Press, Vol. 1, pp. 235–246. [Google Scholar]
- Rice A. 1984. The seismic cone penetrometer. M.A. Sc Thesis. Dept. Civil Engineering, University of British Columbia. [Google Scholar]
- Robertson PK. 1990. Soil classification using the cone penetration test. Can Geotech J 27(1): 151–158. [CrossRef] [Google Scholar]
- Robertson PK. 2009. Interpretation of Cone Penetration Tests − a unified approach. Can Geotech J 46: 1–19. [Google Scholar]
- Robertson PK. 2010. Evaluation of flow liquefaction and liquefied strength using the Cone Penetration Test. J Geotech Geoenviron Eng ASCE 136(6): 842–853. [CrossRef] [Google Scholar]
- Robertson PK. 2015. Comparing CPT and Vs liquefaction triggering methods. J Geotech Geoenviron Eng ASCE 141(9): 842–853. [CrossRef] [Google Scholar]
- Robertson PK. 2016. CPT-based Soil Behaviour Type (SBT) Classification System − an update. Can Geotech J 53(12): 1910–1927. [CrossRef] [Google Scholar]
- Robertson PK, Campanella RG, Gillespie D, Greig J. 1986. Use of Piezometer Cone data. In-Situ’86 Use of Ins-itu testing in Geotechnical Engineering, GSP 6, ASCE. Reston, VA: Specialty Publication, SM 92, pp. 1263–1280. [Google Scholar]
- Robertson PK, Campanella RG, Gillespie D, Rice A. 1986. Seismic CPT to measure in-situ shear wave velocity. J Geotech Eng Div ASCE 112(8): 791–803. [CrossRef] [Google Scholar]
- Robertson PK, Cabal KL. 2010. Estimating soil unit weight from CPT. In: Proceedings of 2nd International Symposium of Cone Penetration Testing, CPT’10. Huntington Beach, California. [Google Scholar]
- Robertson PK, Cabal KL. 2022. A guide to cone penetration testing. 7th ed. Gregg Drilling LLC. Available from https://www.greggdrilling.com/wp-content/uploads/2022/11/CPT-Guide-7th-Final-SMALL.pdf. [Google Scholar]
- Sanglerat G, Petit-Maire M, Bardot F, Savasta P. 1995. Additional results of the AMAP’sols static-dynamic penetrometer. In: Proceedings of International Symposium on Cone Penetration Testing, CPT’95, Linkoping, Sweden, 2. Swedish Geotechnical Society, pp. 85–92. [Google Scholar]
- Schnaid F. 2009. In-situ testing in geomechanics − the main tests. London: Taylor & Francis Group, 327 p. [Google Scholar]
- Schneider JA, Randolph MF, Mayne PW, Ramsey NR. 2008. Analysis of factors influencing soil classification using normalized piezocone tip resistance and pore pressure parameters. J Geotech Geoenviron Eng ASCE 134(11): 1569–1586. [CrossRef] [Google Scholar]
- Schneider JA, Moss RES. 2011. Linking cyclic stress and cyclic strain based methods for assessment of cyclic liquefaction triggering in sands. In: Geotechnique Letters. UK: Institute of Civil Engineers. [Google Scholar]
- Schneider JA, Hotstream JN, Mayne PW, Radolph MF. 2012. Comparing CPTU Q-F and Q-Δu2/σ’vo soil classification charts. Geotech Lett 000: 1–7. https://doi.org/10.1680/geolett.12.00044, 7 p [Google Scholar]
- Stolte AC, Cox BR. 2020. Towards consideration of epistemic uncertainty in shear-wave velocity measurements obtained via seismic cone penetration testing (SCPT). Can Geotech J 57: 48–60. [CrossRef] [Google Scholar]
- Styler MA, Weemees I, Mayne PM. 2016. Experience and observations from 35 years old seismic cone penetration testing. In: Proceedings of GeoVancouver, Vancouver, BC. [Google Scholar]
- Teh CI, Houlsby GT. 1991. An analytical study of the cone penetration test in clay. Geotechnique 41: 17–34. [CrossRef] [Google Scholar]
- Yu HS, Schnaid F, Collins IF. 1996. Analysis of cone pressuremeter tests in sands. J Geotech Eng 122(8): 623–632. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.