Free Access
Issue
Rev. Fr. Geotech.
Number 175, 2023
Article Number 3
Number of page(s) 15
DOI https://doi.org/10.1051/geotech/2023010
Published online 23 October 2023
  • Andrus RD, Stokoe KH. 2000. Liquefaction resistance of soils from shear-wave velocity. J Geotech Geoenviron Eng 126(11): 1015–1025. [CrossRef] [Google Scholar]
  • Atkinson JH. 2007. The mechanics of soils and foundations. London: Taylor & Francis. [Google Scholar]
  • Been K Jefferies MG. 1985. A state parameter for sands. Géotechnique 35(2): 99–112. [CrossRef] [Google Scholar]
  • Bray JD, Sancio RB. 2006. Assessment of the liquefaction susceptibility of fine-grained soils. J Geotech Geoenviron Eng 132(9): 1165–1177. [CrossRef] [Google Scholar]
  • Briaud JL. 2013. The Pressuremeter Test: expanding its use. Menard Lecture, ISSMGE. [Google Scholar]
  • Burland JB. 1990. On the compressibility and shear strength of natural clays. Géotechnique 40(3): 329–378. [CrossRef] [Google Scholar]
  • Burns SE, Mayne PW. 1996. Small- and high-strain measurements of in-situ soil properties using the seismic cone penetrometer. Washington, D.C.: Transportation Research Record 1548, pp. 81–87. [Google Scholar]
  • Bustamante M, Frank R. 1999. Current French design practice for axially loaded piles. Ground Eng: 38–44. [Google Scholar]
  • Butcher AP, Campanella RG, Kaynia AM, Massarsch KR. 2005. Seismic downhole procedure to measure shear wave velocity − a quick guideline. Prepared by ISSMGE T C10: Geophysical Testing in Geotechnical Engineering. In: XVIth ICSMGE, Osaka. [Google Scholar]
  • Campanella RG, Robertson PK. 1982. State of the art in In-situ testing of soils: developments since 1978. In: Proceedings of Engineering Foundation Conference on Updating Subsurface Sampling of Soils and Rocks and Their In-situ Testing. Santa Barbara, California, January 1982, pp. 245–267. [Google Scholar]
  • Darendeli MB. 2001. Development of a new family of normalized modulus reduction and material damping curves. PhD Dissertation. University of Texas. [Google Scholar]
  • DeJong JT, Randolph M. 2014. Influence of partial consolidation during cone penetration on estimated soil behaviour type and pore pressure dissipation measurements. J Geotech Geoenviron Eng ASCE 138(7): 777–788. [Google Scholar]
  • Eslaamizaad S, Robertson PK. 1996. Seismic cone penetration test to identify cemented sands. In: Proceedings of the 49th Canadian Geotechnical Conference. St. John’s, Newfoundland, September, pp. 352–360. [Google Scholar]
  • Fahey M. 1998. Deformation and in-situ stress measurement. In: Geotechnical Site Characterization, Vol. 1 (Proc. ISC-1, Atlanta ), Balkema, Rotterdam, pp. 49–68. [Google Scholar]
  • Gibson RE, Anderson WF. 1961. In situ measurement of soil properties with the pressuremeter. Civil Eng Public Works Rev 56: 615–618. [Google Scholar]
  • Hashash YMA, Musgrove MI, Harmon JA, Groholski DR, Phillips CA, Park D. 2015. DEEPSOIL 6.1, User Manual. Dept Civil Engrg, Univ. Illinois-Urbana. [Google Scholar]
  • Idriss IM, Boulanger RW. 2008. Soil liquefaction during earthquakes. Monograph MNO-12. Oakland, CA: Earthquake Engineering Re search Institute, 261 p. [Google Scholar]
  • Jamiolkowski M. 2012. Role of geophysical testing in geotechnical site characterization. DeMello Lecture, Soils and Rocks, São Paulo, Brazil, 35 (2). [Google Scholar]
  • Kayen R, Moss SE, Thompson EM, et al. 2013. Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenviron Eng 139(3): 407–419. [CrossRef] [Google Scholar]
  • Ku T, Mayne PW, Cargill E. 2013. Continuous interval shear wave velocity profiling by auto-source and seismic cone tests. Can Geotech J 50(2): 382–390. [CrossRef] [Google Scholar]
  • Lacasse S, Nadim F, Liu ZQ, Eidsvig UK, Le TMH, Lin CG. 2019. Risk assessments and dams. In: Proceedings of the XVII ECSMGE, Reykjavik. [Google Scholar]
  • Leroueil S. 1992. A framework for the mechanical behavior of structured soils, from soft clays to weak rocks. In: Proc. US-Brazil NSF Geotechnical Workshop on Applicability of Classical Soil Mechanics Principles to Structured Soils, Belo Horizonte, pp. 107128. [Google Scholar]
  • Leroueil S, Hight DW. 2003. Behaviour and properties of natural soils and soft rocks. In: Tan, et al., ed. Characterisation and engineering properties of natural soils. Swets and Zeitlinger, pp. 29–253. [Google Scholar]
  • Lunne T, Robertson PK, Powell JJM. 1997. Cone penetration testing in geotechnical practice. New York: Blackie Academic, EF Spon/Routledge Publ., 312 p. [Google Scholar]
  • Marchetti D. 2022. Short course notes. Vancouver, BC [Google Scholar]
  • Massarsch R. 1991. Deep soil compaction using vibratory probes. In: Bachus RC, ed. American Society for Testing and Material ASTM, Symposium on Design, Construction, and Testing of Deep Foundation Improvement: Stone Columns and Related Techniques. Philadelphia: ASTM Special Technical Publication, STP 1089, pp. 297–319. [Google Scholar]
  • Mayne PW. 2000. Enhanced geotechnical site characterization by seismic piezocone penetration test. Invited lecture. In: Fourth International Geotechnical Conference. Cairo University, pp. 95–120. [Google Scholar]
  • Mayne PW. 2005. Integrated ground behavior: in-situ and lab tests. In: Deformation characteristics of geomaterials, vol. 2 (Proc. Lyon ). London: Taylor & Francis, pp. 155–177. [Google Scholar]
  • Mayne PW. 2014. Interpretation of geotechnical parameters from seismic piezocone tests. In: Proceedings of 3rd International Symposium on Cone Penetration Testing, CPT14. Las Vegas, Nevada: Gregg Drilling & Testing, Inc. Available from www.cpt14.com. [Google Scholar]
  • Mayne PW, Peuchen J. 2012. Unit weight trends with cone resistance in soft to firm clay. Geotechnical and Geophysical Site Characterization, ISC’4. Brazil: Coutinho and Mayne; Taylor and Francis. [Google Scholar]
  • Mayne PW, McGillivray AV. 2008. Improved shear wave measurements using autoseis sources. In: Deformation characteristics of geomaterials, vol. 2. Ed. Burns, Mayne, & Santamarina. [Google Scholar]
  • Mayne PW, Woeller DJ. 2008. O-cell response using elastic pile and seismic piezocone tests. In: Brown MJ, Bransby MF, Brennan AJ, Knappett JA, eds. Proceedings of the Second British Geotechnical Association International Conference of Foundations − ICOF 2008, Dundee, Scotland. UK: HIS BRE Press, Vol. 1, pp. 235–246. [Google Scholar]
  • Rice A. 1984. The seismic cone penetrometer. M.A. Sc Thesis. Dept. Civil Engineering, University of British Columbia. [Google Scholar]
  • Robertson PK. 1990. Soil classification using the cone penetration test. Can Geotech J 27(1): 151–158. [CrossRef] [Google Scholar]
  • Robertson PK. 2009. Interpretation of Cone Penetration Tests − a unified approach. Can Geotech J 46: 1–19. [Google Scholar]
  • Robertson PK. 2010. Evaluation of flow liquefaction and liquefied strength using the Cone Penetration Test. J Geotech Geoenviron Eng ASCE 136(6): 842–853. [CrossRef] [Google Scholar]
  • Robertson PK. 2015. Comparing CPT and Vs liquefaction triggering methods. J Geotech Geoenviron Eng ASCE 141(9): 842–853. [CrossRef] [Google Scholar]
  • Robertson PK. 2016. CPT-based Soil Behaviour Type (SBT) Classification System − an update. Can Geotech J 53(12): 1910–1927. [CrossRef] [Google Scholar]
  • Robertson PK, Campanella RG, Gillespie D, Greig J. 1986. Use of Piezometer Cone data. In-Situ’86 Use of Ins-itu testing in Geotechnical Engineering, GSP 6, ASCE. Reston, VA: Specialty Publication, SM 92, pp. 1263–1280. [Google Scholar]
  • Robertson PK, Campanella RG, Gillespie D, Rice A. 1986. Seismic CPT to measure in-situ shear wave velocity. J Geotech Eng Div ASCE 112(8): 791–803. [CrossRef] [Google Scholar]
  • Robertson PK, Cabal KL. 2010. Estimating soil unit weight from CPT. In: Proceedings of 2nd International Symposium of Cone Penetration Testing, CPT’10. Huntington Beach, California. [Google Scholar]
  • Robertson PK, Cabal KL. 2022. A guide to cone penetration testing. 7th ed. Gregg Drilling LLC. Available from https://www.greggdrilling.com/wp-content/uploads/2022/11/CPT-Guide-7th-Final-SMALL.pdf. [Google Scholar]
  • Sanglerat G, Petit-Maire M, Bardot F, Savasta P. 1995. Additional results of the AMAP’sols static-dynamic penetrometer. In: Proceedings of International Symposium on Cone Penetration Testing, CPT’95, Linkoping, Sweden, 2. Swedish Geotechnical Society, pp. 85–92. [Google Scholar]
  • Schnaid F. 2009. In-situ testing in geomechanics − the main tests. London: Taylor & Francis Group, 327 p. [Google Scholar]
  • Schneider JA, Randolph MF, Mayne PW, Ramsey NR. 2008. Analysis of factors influencing soil classification using normalized piezocone tip resistance and pore pressure parameters. J Geotech Geoenviron Eng ASCE 134(11): 1569–1586. [CrossRef] [Google Scholar]
  • Schneider JA, Moss RES. 2011. Linking cyclic stress and cyclic strain based methods for assessment of cyclic liquefaction triggering in sands. In: Geotechnique Letters. UK: Institute of Civil Engineers. [Google Scholar]
  • Schneider JA, Hotstream JN, Mayne PW, Radolph MF. 2012. Comparing CPTU Q-F and Q-Δu2/σ’vo soil classification charts. Geotech Lett 000: 1–7. https://doi.org/10.1680/geolett.12.00044, 7 p [Google Scholar]
  • Stolte AC, Cox BR. 2020. Towards consideration of epistemic uncertainty in shear-wave velocity measurements obtained via seismic cone penetration testing (SCPT). Can Geotech J 57: 48–60. [CrossRef] [Google Scholar]
  • Styler MA, Weemees I, Mayne PM. 2016. Experience and observations from 35 years old seismic cone penetration testing. In: Proceedings of GeoVancouver, Vancouver, BC. [Google Scholar]
  • Teh CI, Houlsby GT. 1991. An analytical study of the cone penetration test in clay. Geotechnique 41: 17–34. [CrossRef] [Google Scholar]
  • Yu HS, Schnaid F, Collins IF. 1996. Analysis of cone pressuremeter tests in sands. J Geotech Eng 122(8): 623–632. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.