Accès gratuit
Review
Numéro
Rev. Fr. Geotech.
Numéro 151, 2017
Numéro d'article 4
Nombre de pages 15
DOI https://doi.org/10.1051/geotech/2017010
Publié en ligne 10 juillet 2017
  • Abraham O, Chammas R, Cote PH, Pedersen HA, Semblat JF. 2004. Mechanical characterization of heterogeneous soils with surface waves: experimental validation on reduced-scale physical models. Near Surf Geophys 2(4): 249–258. [CrossRef] [Google Scholar]
  • Achaoui Y, Laude V, Benchabane S, Khelif A. 2013. Local resonances in phononics crystals and in random arrangements of pillars on a surface. J Appl Phys 114: 104503. [CrossRef] [Google Scholar]
  • Achaoui Y, Ungureanu B, Enoch S, Brûlé S., Guenneau S. 2016. Seismic waves damping with arrays of inertial resonators. Extrem Mechan Lett 8: 30–37. [Google Scholar]
  • AFPS, CFMS. 2012. Procédés d'amélioration et de renforcement de sols sous action sismique. Guide technique. Presses des Ponts. [Google Scholar]
  • Aki K, Richards PG. 2002. Quantitative seismology: theory and methods. California: University Science Books, ed. 2. [Google Scholar]
  • Aznavourian R, Puvirajesinghe T, Brûlé S, Enoch S, Guenneau S. 2016. Bio-inspired seismic metamaterials with transformed elastic crystals. J Phys Condens Matter. Available from https://arxiv.org/ftp/arxiv/papers/1611/1611.00867. [Google Scholar]
  • Benchabane S, Gaiffe O, Salut R, Ulliac G, Laude V, Kokkonen K. 2015. Guidance of surface waves in a micron-scale phononic crystal line-defect waveguide. Appl Phys Lett 106(8): 81903. [CrossRef] [Google Scholar]
  • Berraquero CP, Maurel A, Petitjeans P, Pagneux V. 2013. Experimental realization of a water-wave metamaterial shifter. Phys Rev E 88: 051002. [CrossRef] [Google Scholar]
  • Betbeder-Matibet J. 2003a. Génie parasismique. Phénomènes sismiques. Cachan : Hermes Science Publications − Lavoisier, Vol. 1, 318 p. [Google Scholar]
  • Betbeder-Matibet J. 2003b. Génie parasismique. Prévention parasismique. Cachan : Hermes Science Publications − Lavoisier, Vol. 1, 318 p. [Google Scholar]
  • Bitri A, Samyn K, Brûlé S, Javelaud EH. 2013. Assessment of ground compaction using multi-channel analysis of surface wave data and cone penetration tests. Near Surf Geophys 11: 683–690. [CrossRef] [Google Scholar]
  • Bleistein N. 1984. Mathematical methods for wave phenomena. New York Academic Press, Inc. [Google Scholar]
  • Bouchitté G, Felbacq D. 2004. Homogenization near resonances and artificial magnetism from dielectrics. Comptes Rendus Math Elsevier 339(5): 377–382. [Google Scholar]
  • Brillouin L. 1946. Wave propagation in periodic structures. McGraw-Hill Book Company Inc. [Google Scholar]
  • Brûlé S, Duquesnoy S. 2016. Change of ground type by means of dynamic compaction: Consequences on the calculation of seismic loadings. Innov Infrastruc Solut 1: (39). Doi: 10.1007/s41062-016- 0037-4. [Google Scholar]
  • Brûlé S, Javelaud EH, Ohmachi T, Nakamura Y, Inoue S. 2010. H/V method used to qualify the modification of dynamic soil characteristics due to ground improvement work by means of heavy compaction process. A case study: the former Givors's glass factory area. 7th International Conference on Urban Earthquake Engineering and 5th International Conference on Earthquake Engineering in Tokyo, Japan 02-026, 451–455. [Google Scholar]
  • Brûlé S, Javelaud EH, Enoch S, Guenneau S. 2014. Experiments on seismic metamaterials: molding surface waves. Physi Rev Lett 112: 133901. [Google Scholar]
  • Brûlé S, Enoch S, Guenneau S. 2015a. Seismic holes for controlling surface waves. Proceedings of META'15, The 6th International Conference on Metamaterials, Photonic Crystals and Plasmonics, 4 to 7 july 2015, New-York, USA. [Google Scholar]
  • Brûlé S, Bretschneider A, Djeran-Maigre I, Thorel L. 2015b. Métamatériaux sismiques et essais en centrifugeuses. 9ème Colloque national de l'AFPS, du 30 novembre au 2 décembre 2015. Session spéciale métamatériaux sismiques. Marne La Vallée, France. [Google Scholar]
  • Brûlé S, Javelaud E, Enoch S, Guenneau S. 2016. Flat lens for seismic waves. Sci Rep Nat. Available from https://arxiv.org/abs/1602.04492. [Google Scholar]
  • Brun M, Guenneau S, Movchan AB. 2009. Achieving control of in-plane elastic waves. Appl Phys Lett 94: 061903. [Google Scholar]
  • Caleap M. 2009. Modélisation de la propagation d'ondes élastiques anti-planes dans les milieux multifissurés. Thèse de l'université de Bordeaux 1. [Google Scholar]
  • Campillo M, Paul A. 2003. Long-range correlations in the diffuse seismic coda. Sci 299: 547. [CrossRef] [PubMed] [Google Scholar]
  • Chazelas JL. 1999. Quinze ans de simulation sismique en centrifugeuse dans le monde, Colloque national de génie parasismique, Cachan, France. [Google Scholar]
  • Chesnais C, Boutin C, Hans S. 2011. Structural dynamics and generalized continua, in mechanics of generalized continua. In Altenbach H, Maugin V, Erofeev V, eds. Advanced structured materials. Berlin Heidelberg: Springer, 7. [Google Scholar]
  • Colombi A, Roux P, Guenneau S, Rupin M. 2015. Directional cloaking of flexural waves in a plate with a locally resonant metamaterial. Journal Acoust Soc Am 137: 1783–1789. [Google Scholar]
  • De Buhan P. 1986. Approche fondamentale du calcul à la rupture des ouvrages en sols renforcés. Thèse de doctorat d'État, université Pierre et Marie Curie, Paris 6. [Google Scholar]
  • Diatta A, Guenneau S. 2014. Controlling solid elastic waves with spherical cloaks. Appl Phys Lett 105(2): 021901. [Google Scholar]
  • Dijckmans A, Ekblad A, Smekal A, Degrande G, Lombaert G. 2016. Efficacy of a sheet pile wall as a wave barrier for railway induced ground vibration. Soil Dyn Earthq Eng 84: 55–69. [CrossRef] [Google Scholar]
  • Dubois M, Farhat M, Bossy E, Enoch S, Guenneau S, Sebbah P. 2013. Flat lens for pulse focusing of elastic waves in thin plates. Appl Phys Lett 103: 071915. [CrossRef] [Google Scholar]
  • Dupont G, Kimmoun O, Molin B, Guenneau S, Enoch S. 2015. Numerical and experimental study of an invisibility carpet in a water channel. Phys Rev E 91: 023010. [CrossRef] [Google Scholar]
  • Duvaut G, Lions JJ. 1976. Inequalities in Mechanics and Physics. Berlin: Springer, ISBN: 978-3-642-66167-9. [Google Scholar]
  • Economou EN, Sigalas MM. 1993. Classical wave propagation in periodic structures: Cermet versus network topology. Phys Rev B 48: 13434–13438. [CrossRef] [Google Scholar]
  • Farhat M, Enoch S, Guenneau S, Movchan AB. 2008. Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys Rev Lett 101: 1345011. [Google Scholar]
  • Farhat M, Guenneau S, Enoch S. 2009. Ultrabroadband elastic cloacking in thin plates. Phys Rev Lett 103: 024301. [Google Scholar]
  • Gralak B, Enoch S, Tayeb G. 2000. Anomalous refractive properties of photonic crystals. J Opt Soc Am A 17: 1012–1020. [CrossRef] [Google Scholar]
  • Gueguen P, Bard PY, Semblat JF. 2000. From soil-structure interaction to site-city interaction. 12th World Conference on Earthquake Engineering, Auckland, New-Zeland. [Google Scholar]
  • Guenneau S, Gralak B. 2006. Un matériau pour une lentille parfaite. La Recherche 401: 58. [Google Scholar]
  • Guenneau S, Enoch S, Brûlé; S. 2015. Invisibilité en physique transformationnelle. Actes de la conférence AFPS'15, 30 novembre au 2 décembre 2015, Marne La Vallée, France. [Google Scholar]
  • Guéguin M. 2014. Approche par une méthode d'homogénéisation du comportement des ouvrages en sols renforcés par colonnes ou tranchées. Thèse de l'université Paris Est. [Google Scholar]
  • Hobiger M. 2011. Polarization of surface waves: characterization, inversion and application to seismic hazard assessment. Thèse de l'université de Grenoble. [Google Scholar]
  • Iwasaki T, Tatsuoka F, Takagi Y. 1978. Shear moduli of sands under cyclic torsional shear loading. Soils Found. Jpn Soc Soil Mech Found Eng. 18(1): 39–56. [Google Scholar]
  • John S. 1987. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23): 2486–2489. [Google Scholar]
  • Krodel S, Thome N, Daraio C. 2015. Wide band-gap seismic metastructures. Extreme Mech Lett 4: 111–117. [Google Scholar]
  • Kushwaha MS. 1997. Stop-bands for periodic metallic rods − sculptures that can filter the noise. Appl Phys Lett 70(24): 3218–3220. [CrossRef] [Google Scholar]
  • Larabi H. 2011. Cristaux phononiques et métamatériaux acoustiques. Applications aux domaines du guidage, filtrage et de l'isolation phonique. Thèse de l'université de Lille 1 sciences et technologies. [Google Scholar]
  • Larose E, Margerin L, Van Tiggelen BA, Campillo M. 2004. Weak localization of seismic waves. Appl Phys Lett 93: 048501. [Google Scholar]
  • Laude V. 2015. Phononic crystals. Artificial crystals for sonic, acoustic, and elastic waves. Berlin, Boston: De Gruyter Studies in Mathematical Physics 26. [CrossRef] [Google Scholar]
  • Laude V, Khelif A, Benchabane S. An introduction to phononic crystals. Available from http://www.femto-st.fr/en/Popularization/An-introduction-to-phononic-crystals.php (last consult: 01/06/2016). [Google Scholar]
  • Lee D, Nguyen DM, Rho J. 2017. Acoustic wave science realized by metamaterials. Nano Converg 4: 3. [CrossRef] [Google Scholar]
  • Liu Z, Zhang X, Mao Y, et al. 2000. Locally resonant sonic materials. Sci 289(5485): 1734–1736. [CrossRef] [Google Scholar]
  • Lukens JM, Leaird DE, Weiner AM. 2013. A temporal cloak at telecommunication data rate. Nature 498: 205–208. [CrossRef] [Google Scholar]
  • Ma G, Sheng P. 2016. Acoustic metamaterials: From local resonances to broad horizons. Sci Adv 2(2): e1501595. [Google Scholar]
  • McCall MW, Favaro A, Kinsler P, Boardman A. 2011. A spacetime cloak, or a history editor. J Opt 13: 029501. [CrossRef] [Google Scholar]
  • Milton GW. 2002. The theory of composites. Cambridge: Cambridge University Press. [Google Scholar]
  • Milton GW, Briane M, Willis JR. 2006. On cloaking for elasticity and physical equations with a transformation invariant form. New J Phys 8: 248. [Google Scholar]
  • NF EN 1998-5, 2005. Eurocode 8–Calcul des structures pour leur résistance aux séismes − Partie 5 : fondations, ouvrages de soutènement et aspects géotechniques. [Google Scholar]
  • Nguyen V. 2014. Analyse sismique des ouvrages renforcés par inclusions rigides à l'aide d'une modélisation multiphasique. Thèse de l'université Paris Est. [Google Scholar]
  • Nicolet A, Remacle JF, Meys B, Genon A, Legros W. 1994. Transformation methods in computational electromagnetics. J Appl Phys 75(10): 6036–6038. [CrossRef] [Google Scholar]
  • Nicolet A, Zolla F, Guenneau S. 2004. Modelling of twisted optical waveguides with edge elements. Eur Phys J Appl Phys 28: 153. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pecker A, Teyssandier P. 2009. Conception parasismique du pont de Rion-Antirion. 19ème Congrès français de mécanique à Marseille, 24–28 août 2009. [Google Scholar]
  • Pendry JB. 2000. Negative refraction makes a perfect lens. Phys Rev Lett 85, 3966–3969. [Google Scholar]
  • Pendry JB, Schurig D, Smith DR. 2006. Controlling Electromagnetic Fields. Sci 312(5781): 1780–1782. [Google Scholar]
  • Ramakrishna SA, Pendry JB, Schurig D, Smith DR. 2002. The asymmetry lossy near-perfect lens. J Mod Opt 49(10): 1747–1762. [CrossRef] [Google Scholar]
  • Rayleigh JWS. 1888. On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes. Philos Mag 26: 256–265. [CrossRef] [Google Scholar]
  • Semblat JF. 1995. Sols sous sollicitations dynamiques et transitoires : réponses dynamiques aux barres de Hopkinson, propagation d'ondes en milieu centrifugé. Laboratoire des Ponts et Chaussées. Série géotechnique GT 60. [Google Scholar]
  • Semblat JF, Pecker A. 2009. Waves and vibrations in soils: earthquakes, traffic, shocks, construction works. Pavia: Fondazione Eucentre. [Google Scholar]
  • Semblat JF, Lenti L, Jacqueline D, Leblond JJ, Grasso E. 2011. Vibrations induites dans les sols par le trafic ferroviaire : expérimentations et isolation. Rev Fr Géotech 134–135: 23–26. [Google Scholar]
  • Sheng P. 2014. Viewpoint: A Step towards a seismic cloak. Physics 7, 34. [CrossRef] [Google Scholar]
  • Smith DR, Kroll N. 2000. Negative refractive index in left-handed materials. Phys Rev Lett 85: 2933. [Google Scholar]
  • Smith DR, Pendry JB, Wiltshire MCK. 2004. Metamaterials and negative refractive index. Sci 305: 788–792. [Google Scholar]
  • Soil Magazine. 2016. Revue interne de Solétanche-Bachy et Ménard. n° 2 de février 2016. [Google Scholar]
  • Srbulov M. 2010. Ground vibration engineering. Geotechnical, Geological and Earthquake Engineering. Netherlands: Springer. [CrossRef] [Google Scholar]
  • Takemiya H, Shimabuku J. 2002. Application of soil-cement columns for better seismic design of bridge piles and mitigation of nearby ground vibration due to traffic. J Struc Eng JSCE 48A: 437–444. [Google Scholar]
  • Ungureanu B, Achaoui Y, Enoch S, Brûlé S, Guenneau S. 2016. Auxetic-like metamaterials as novel earthquake protections. Eur Phys J Appl Metamater 2, 17. [Google Scholar]
  • Vasseur JO, Deymier PA, Frantziskonis G, Hong G, Djafari-Rouhani B, Dobrzynski L. 1998. Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media. J Phys Condens Matt 10: 6051–6064. [CrossRef] [Google Scholar]
  • Verruijt A. 2010. Theory and Applications of Transport in Porous Media,Volume 24. Netherlands: Springer. [Google Scholar]
  • Veselago VG. 1968. The electrodynamics of substances with simultaneously negative values of ε and µ. Sov Phys Uspekhi 10(4): 509–514. [Google Scholar]
  • Walser RM. 2001. Electromagnetic metamaterials. Paper presented at the International Society for Optical Engineering (SPIE), San Diego, USA 4467: 1–165. [Google Scholar]
  • Wirgin A, Bard P-Y. 1996. Effects of buildings on the duration and amplitude of ground motion in Mexico City. Bull Seismol Soc Am 86: 914–920. [Google Scholar]
  • Woods RD. 1968. Screening of surface waves in soils. University of Michigan. Tech. Rep. IP- 804. [Google Scholar]
  • Yablonovitch E. 1987. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58: 2059. [CrossRef] [Google Scholar]
  • Yablonovitch E. 2001. Photonic crystals: semi-conductors of light. Scientific American. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.