Free Access
Review
Issue
Rev. Fr. Geotech.
Number 151, 2017
Article Number 4
Number of page(s) 15
DOI https://doi.org/10.1051/geotech/2017010
Published online 10 July 2017
  • Abraham O, Chammas R, Cote PH, Pedersen HA, Semblat JF. 2004. Mechanical characterization of heterogeneous soils with surface waves: experimental validation on reduced-scale physical models. Near Surf Geophys 2(4): 249–258. [CrossRef] [Google Scholar]
  • Achaoui Y, Laude V, Benchabane S, Khelif A. 2013. Local resonances in phononics crystals and in random arrangements of pillars on a surface. J Appl Phys 114: 104503. [CrossRef] [Google Scholar]
  • Achaoui Y, Ungureanu B, Enoch S, Brûlé S., Guenneau S. 2016. Seismic waves damping with arrays of inertial resonators. Extrem Mechan Lett 8: 30–37. [Google Scholar]
  • AFPS, CFMS. 2012. Procédés d'amélioration et de renforcement de sols sous action sismique. Guide technique. Presses des Ponts. [Google Scholar]
  • Aki K, Richards PG. 2002. Quantitative seismology: theory and methods. California: University Science Books, ed. 2. [Google Scholar]
  • Aznavourian R, Puvirajesinghe T, Brûlé S, Enoch S, Guenneau S. 2016. Bio-inspired seismic metamaterials with transformed elastic crystals. J Phys Condens Matter. Available from https://arxiv.org/ftp/arxiv/papers/1611/1611.00867. [Google Scholar]
  • Benchabane S, Gaiffe O, Salut R, Ulliac G, Laude V, Kokkonen K. 2015. Guidance of surface waves in a micron-scale phononic crystal line-defect waveguide. Appl Phys Lett 106(8): 81903. [CrossRef] [Google Scholar]
  • Berraquero CP, Maurel A, Petitjeans P, Pagneux V. 2013. Experimental realization of a water-wave metamaterial shifter. Phys Rev E 88: 051002. [CrossRef] [Google Scholar]
  • Betbeder-Matibet J. 2003a. Génie parasismique. Phénomènes sismiques. Cachan : Hermes Science Publications − Lavoisier, Vol. 1, 318 p. [Google Scholar]
  • Betbeder-Matibet J. 2003b. Génie parasismique. Prévention parasismique. Cachan : Hermes Science Publications − Lavoisier, Vol. 1, 318 p. [Google Scholar]
  • Bitri A, Samyn K, Brûlé S, Javelaud EH. 2013. Assessment of ground compaction using multi-channel analysis of surface wave data and cone penetration tests. Near Surf Geophys 11: 683–690. [CrossRef] [Google Scholar]
  • Bleistein N. 1984. Mathematical methods for wave phenomena. New York Academic Press, Inc. [Google Scholar]
  • Bouchitté G, Felbacq D. 2004. Homogenization near resonances and artificial magnetism from dielectrics. Comptes Rendus Math Elsevier 339(5): 377–382. [Google Scholar]
  • Brillouin L. 1946. Wave propagation in periodic structures. McGraw-Hill Book Company Inc. [Google Scholar]
  • Brûlé S, Duquesnoy S. 2016. Change of ground type by means of dynamic compaction: Consequences on the calculation of seismic loadings. Innov Infrastruc Solut 1: (39). Doi: 10.1007/s41062-016- 0037-4. [Google Scholar]
  • Brûlé S, Javelaud EH, Ohmachi T, Nakamura Y, Inoue S. 2010. H/V method used to qualify the modification of dynamic soil characteristics due to ground improvement work by means of heavy compaction process. A case study: the former Givors's glass factory area. 7th International Conference on Urban Earthquake Engineering and 5th International Conference on Earthquake Engineering in Tokyo, Japan 02-026, 451–455. [Google Scholar]
  • Brûlé S, Javelaud EH, Enoch S, Guenneau S. 2014. Experiments on seismic metamaterials: molding surface waves. Physi Rev Lett 112: 133901. [Google Scholar]
  • Brûlé S, Enoch S, Guenneau S. 2015a. Seismic holes for controlling surface waves. Proceedings of META'15, The 6th International Conference on Metamaterials, Photonic Crystals and Plasmonics, 4 to 7 july 2015, New-York, USA. [Google Scholar]
  • Brûlé S, Bretschneider A, Djeran-Maigre I, Thorel L. 2015b. Métamatériaux sismiques et essais en centrifugeuses. 9ème Colloque national de l'AFPS, du 30 novembre au 2 décembre 2015. Session spéciale métamatériaux sismiques. Marne La Vallée, France. [Google Scholar]
  • Brûlé S, Javelaud E, Enoch S, Guenneau S. 2016. Flat lens for seismic waves. Sci Rep Nat. Available from https://arxiv.org/abs/1602.04492. [Google Scholar]
  • Brun M, Guenneau S, Movchan AB. 2009. Achieving control of in-plane elastic waves. Appl Phys Lett 94: 061903. [Google Scholar]
  • Caleap M. 2009. Modélisation de la propagation d'ondes élastiques anti-planes dans les milieux multifissurés. Thèse de l'université de Bordeaux 1. [Google Scholar]
  • Campillo M, Paul A. 2003. Long-range correlations in the diffuse seismic coda. Sci 299: 547. [CrossRef] [PubMed] [Google Scholar]
  • Chazelas JL. 1999. Quinze ans de simulation sismique en centrifugeuse dans le monde, Colloque national de génie parasismique, Cachan, France. [Google Scholar]
  • Chesnais C, Boutin C, Hans S. 2011. Structural dynamics and generalized continua, in mechanics of generalized continua. In Altenbach H, Maugin V, Erofeev V, eds. Advanced structured materials. Berlin Heidelberg: Springer, 7. [Google Scholar]
  • Colombi A, Roux P, Guenneau S, Rupin M. 2015. Directional cloaking of flexural waves in a plate with a locally resonant metamaterial. Journal Acoust Soc Am 137: 1783–1789. [Google Scholar]
  • De Buhan P. 1986. Approche fondamentale du calcul à la rupture des ouvrages en sols renforcés. Thèse de doctorat d'État, université Pierre et Marie Curie, Paris 6. [Google Scholar]
  • Diatta A, Guenneau S. 2014. Controlling solid elastic waves with spherical cloaks. Appl Phys Lett 105(2): 021901. [Google Scholar]
  • Dijckmans A, Ekblad A, Smekal A, Degrande G, Lombaert G. 2016. Efficacy of a sheet pile wall as a wave barrier for railway induced ground vibration. Soil Dyn Earthq Eng 84: 55–69. [CrossRef] [Google Scholar]
  • Dubois M, Farhat M, Bossy E, Enoch S, Guenneau S, Sebbah P. 2013. Flat lens for pulse focusing of elastic waves in thin plates. Appl Phys Lett 103: 071915. [CrossRef] [Google Scholar]
  • Dupont G, Kimmoun O, Molin B, Guenneau S, Enoch S. 2015. Numerical and experimental study of an invisibility carpet in a water channel. Phys Rev E 91: 023010. [CrossRef] [Google Scholar]
  • Duvaut G, Lions JJ. 1976. Inequalities in Mechanics and Physics. Berlin: Springer, ISBN: 978-3-642-66167-9. [Google Scholar]
  • Economou EN, Sigalas MM. 1993. Classical wave propagation in periodic structures: Cermet versus network topology. Phys Rev B 48: 13434–13438. [CrossRef] [Google Scholar]
  • Farhat M, Enoch S, Guenneau S, Movchan AB. 2008. Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys Rev Lett 101: 1345011. [Google Scholar]
  • Farhat M, Guenneau S, Enoch S. 2009. Ultrabroadband elastic cloacking in thin plates. Phys Rev Lett 103: 024301. [Google Scholar]
  • Gralak B, Enoch S, Tayeb G. 2000. Anomalous refractive properties of photonic crystals. J Opt Soc Am A 17: 1012–1020. [CrossRef] [Google Scholar]
  • Gueguen P, Bard PY, Semblat JF. 2000. From soil-structure interaction to site-city interaction. 12th World Conference on Earthquake Engineering, Auckland, New-Zeland. [Google Scholar]
  • Guenneau S, Gralak B. 2006. Un matériau pour une lentille parfaite. La Recherche 401: 58. [Google Scholar]
  • Guenneau S, Enoch S, Brûlé; S. 2015. Invisibilité en physique transformationnelle. Actes de la conférence AFPS'15, 30 novembre au 2 décembre 2015, Marne La Vallée, France. [Google Scholar]
  • Guéguin M. 2014. Approche par une méthode d'homogénéisation du comportement des ouvrages en sols renforcés par colonnes ou tranchées. Thèse de l'université Paris Est. [Google Scholar]
  • Hobiger M. 2011. Polarization of surface waves: characterization, inversion and application to seismic hazard assessment. Thèse de l'université de Grenoble. [Google Scholar]
  • Iwasaki T, Tatsuoka F, Takagi Y. 1978. Shear moduli of sands under cyclic torsional shear loading. Soils Found. Jpn Soc Soil Mech Found Eng. 18(1): 39–56. [Google Scholar]
  • John S. 1987. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23): 2486–2489. [Google Scholar]
  • Krodel S, Thome N, Daraio C. 2015. Wide band-gap seismic metastructures. Extreme Mech Lett 4: 111–117. [Google Scholar]
  • Kushwaha MS. 1997. Stop-bands for periodic metallic rods − sculptures that can filter the noise. Appl Phys Lett 70(24): 3218–3220. [CrossRef] [Google Scholar]
  • Larabi H. 2011. Cristaux phononiques et métamatériaux acoustiques. Applications aux domaines du guidage, filtrage et de l'isolation phonique. Thèse de l'université de Lille 1 sciences et technologies. [Google Scholar]
  • Larose E, Margerin L, Van Tiggelen BA, Campillo M. 2004. Weak localization of seismic waves. Appl Phys Lett 93: 048501. [Google Scholar]
  • Laude V. 2015. Phononic crystals. Artificial crystals for sonic, acoustic, and elastic waves. Berlin, Boston: De Gruyter Studies in Mathematical Physics 26. [CrossRef] [Google Scholar]
  • Laude V, Khelif A, Benchabane S. An introduction to phononic crystals. Available from http://www.femto-st.fr/en/Popularization/An-introduction-to-phononic-crystals.php (last consult: 01/06/2016). [Google Scholar]
  • Lee D, Nguyen DM, Rho J. 2017. Acoustic wave science realized by metamaterials. Nano Converg 4: 3. [CrossRef] [Google Scholar]
  • Liu Z, Zhang X, Mao Y, et al. 2000. Locally resonant sonic materials. Sci 289(5485): 1734–1736. [CrossRef] [Google Scholar]
  • Lukens JM, Leaird DE, Weiner AM. 2013. A temporal cloak at telecommunication data rate. Nature 498: 205–208. [CrossRef] [Google Scholar]
  • Ma G, Sheng P. 2016. Acoustic metamaterials: From local resonances to broad horizons. Sci Adv 2(2): e1501595. [Google Scholar]
  • McCall MW, Favaro A, Kinsler P, Boardman A. 2011. A spacetime cloak, or a history editor. J Opt 13: 029501. [CrossRef] [Google Scholar]
  • Milton GW. 2002. The theory of composites. Cambridge: Cambridge University Press. [Google Scholar]
  • Milton GW, Briane M, Willis JR. 2006. On cloaking for elasticity and physical equations with a transformation invariant form. New J Phys 8: 248. [Google Scholar]
  • NF EN 1998-5, 2005. Eurocode 8–Calcul des structures pour leur résistance aux séismes − Partie 5 : fondations, ouvrages de soutènement et aspects géotechniques. [Google Scholar]
  • Nguyen V. 2014. Analyse sismique des ouvrages renforcés par inclusions rigides à l'aide d'une modélisation multiphasique. Thèse de l'université Paris Est. [Google Scholar]
  • Nicolet A, Remacle JF, Meys B, Genon A, Legros W. 1994. Transformation methods in computational electromagnetics. J Appl Phys 75(10): 6036–6038. [CrossRef] [Google Scholar]
  • Nicolet A, Zolla F, Guenneau S. 2004. Modelling of twisted optical waveguides with edge elements. Eur Phys J Appl Phys 28: 153. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pecker A, Teyssandier P. 2009. Conception parasismique du pont de Rion-Antirion. 19ème Congrès français de mécanique à Marseille, 24–28 août 2009. [Google Scholar]
  • Pendry JB. 2000. Negative refraction makes a perfect lens. Phys Rev Lett 85, 3966–3969. [Google Scholar]
  • Pendry JB, Schurig D, Smith DR. 2006. Controlling Electromagnetic Fields. Sci 312(5781): 1780–1782. [Google Scholar]
  • Ramakrishna SA, Pendry JB, Schurig D, Smith DR. 2002. The asymmetry lossy near-perfect lens. J Mod Opt 49(10): 1747–1762. [CrossRef] [Google Scholar]
  • Rayleigh JWS. 1888. On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes. Philos Mag 26: 256–265. [CrossRef] [Google Scholar]
  • Semblat JF. 1995. Sols sous sollicitations dynamiques et transitoires : réponses dynamiques aux barres de Hopkinson, propagation d'ondes en milieu centrifugé. Laboratoire des Ponts et Chaussées. Série géotechnique GT 60. [Google Scholar]
  • Semblat JF, Pecker A. 2009. Waves and vibrations in soils: earthquakes, traffic, shocks, construction works. Pavia: Fondazione Eucentre. [Google Scholar]
  • Semblat JF, Lenti L, Jacqueline D, Leblond JJ, Grasso E. 2011. Vibrations induites dans les sols par le trafic ferroviaire : expérimentations et isolation. Rev Fr Géotech 134–135: 23–26. [Google Scholar]
  • Sheng P. 2014. Viewpoint: A Step towards a seismic cloak. Physics 7, 34. [CrossRef] [Google Scholar]
  • Smith DR, Kroll N. 2000. Negative refractive index in left-handed materials. Phys Rev Lett 85: 2933. [Google Scholar]
  • Smith DR, Pendry JB, Wiltshire MCK. 2004. Metamaterials and negative refractive index. Sci 305: 788–792. [Google Scholar]
  • Soil Magazine. 2016. Revue interne de Solétanche-Bachy et Ménard. n° 2 de février 2016. [Google Scholar]
  • Srbulov M. 2010. Ground vibration engineering. Geotechnical, Geological and Earthquake Engineering. Netherlands: Springer. [CrossRef] [Google Scholar]
  • Takemiya H, Shimabuku J. 2002. Application of soil-cement columns for better seismic design of bridge piles and mitigation of nearby ground vibration due to traffic. J Struc Eng JSCE 48A: 437–444. [Google Scholar]
  • Ungureanu B, Achaoui Y, Enoch S, Brûlé S, Guenneau S. 2016. Auxetic-like metamaterials as novel earthquake protections. Eur Phys J Appl Metamater 2, 17. [Google Scholar]
  • Vasseur JO, Deymier PA, Frantziskonis G, Hong G, Djafari-Rouhani B, Dobrzynski L. 1998. Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media. J Phys Condens Matt 10: 6051–6064. [CrossRef] [Google Scholar]
  • Verruijt A. 2010. Theory and Applications of Transport in Porous Media,Volume 24. Netherlands: Springer. [Google Scholar]
  • Veselago VG. 1968. The electrodynamics of substances with simultaneously negative values of ε and µ. Sov Phys Uspekhi 10(4): 509–514. [Google Scholar]
  • Walser RM. 2001. Electromagnetic metamaterials. Paper presented at the International Society for Optical Engineering (SPIE), San Diego, USA 4467: 1–165. [Google Scholar]
  • Wirgin A, Bard P-Y. 1996. Effects of buildings on the duration and amplitude of ground motion in Mexico City. Bull Seismol Soc Am 86: 914–920. [Google Scholar]
  • Woods RD. 1968. Screening of surface waves in soils. University of Michigan. Tech. Rep. IP- 804. [Google Scholar]
  • Yablonovitch E. 1987. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58: 2059. [CrossRef] [Google Scholar]
  • Yablonovitch E. 2001. Photonic crystals: semi-conductors of light. Scientific American. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.