Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 164, 2020
Numéro d'article 1
Nombre de pages 20
DOI https://doi.org/10.1051/geotech/2020019
Publié en ligne 7 octobre 2020
  • Addenbrooke T, Potts D. 2001. Twin tunnel interaction: surface and subsurface effects. Int J Geomech 1: 249–271. [CrossRef] [Google Scholar]
  • AFNOR. 2013. NFP94-261 – Justification des ouvrages géotechniques : normes d’application nationale de l’Eurocode 7 – Fondations superficielles, 126 p. [Google Scholar]
  • AFTES GT4. 2000. Choix des techniques d’excavation mécanisée. Recommandation GT4 R3F1. Tunnels et Ouvrages Souterrains 157: 7–37. [Google Scholar]
  • AFTES GT16. 2018. Prise en compte des effets induits par le creusement sur les constructions avoisinantes dans la conception et la réalisation des ouvrages souterrains. Recommandation GT16 R2F1, 68 p. [Google Scholar]
  • Alsahly A, Stascheit J, Meschke G. 2016. Advanced finite element modeling of excavation and advancement processes in mechanized tunneling. Adv Eng Software 100: 198–214. [CrossRef] [Google Scholar]
  • Anagnostou G, Kovari K. 1996. Face stability conditions with Earth Pressure Balanced Shield. Tunn Undergr Sp Technol 11: 165–173. [CrossRef] [Google Scholar]
  • Aristaghes P, Autuori P. 2001. Calcul des tunnels au tunnelier. Revue Française de Géotechnique 97: 31–40. [CrossRef] [EDP Sciences] [Google Scholar]
  • Atkinson JH, Potts DM. 1977. Subsidence above shallow tunnel in soft ground. J Geotech Eng Division, ASCE GT4, pp. 307–325. [Google Scholar]
  • Berthoz N, Branque D, Subrin D, Wong H, Humbert E. 2012. Face failure in homogeneous and stratified soft ground: theoretical and experimental approaches on 1 g EPBS reduced-scale model. Tunn Undergr Sp Technol 30: 25–37. [CrossRef] [Google Scholar]
  • Berthoz N, Branque D, Wong H, Subrin D. 2018. TBM soft ground interaction: Experimental study on a 1 g reduced-scale EPBS model. Tunn Undergr Sp Technol 72: 189–209. [CrossRef] [Google Scholar]
  • Bolton MD. 1986. The strength and dilatancy of sands. Géotechnique 36(1): 65–78. [CrossRef] [Google Scholar]
  • Bouayad D, Emeriault F. 2017. Modeling the relationship between ground surface settlements induced by shield tunneling and the operational and geological parameters based on the hybrid PCA/ANFIS method. Tunn Undergr Sp Technol 68: 142–152. [CrossRef] [Google Scholar]
  • Chambon P, Corte JF. 1990. Stabilité du front de taille d’un tunnel dans un milieu frottant : approche cinématique en calcul à la rupture. Revue Française de Géotechnique 51: 51–59. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dias D, Kastner R. 2013. Movements caused by the excavation of tunnels using face pressurized shields – Analysis of monitoring and numerical modeling results. Eng Geol 152: 17–25. [CrossRef] [Google Scholar]
  • Dinadarloo SR, Siami-Irdemoosa E. 2015. Maximum surface settlement based classification of shallow tunnels in soft ground. Tunn Undergr Sp Technol 49: 320–327. [CrossRef] [Google Scholar]
  • Do NA, Dias D, Oreste P, Djeran-Maigre I. 2014. Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground. Tunn Undergr Sp Technol 42: 40–51. [CrossRef] [Google Scholar]
  • Fargnoli V, Boldini D, Amorosi A. 2013. TBM tunnelling-induced settlements in coarse-grained soils: The case of the new Milan underground line 5. Tunn Undergr Sp Technol 38: 336–347. [CrossRef] [Google Scholar]
  • Ferrari M, Krot R, Blondeau O, Prusak A, Panigoni T, Bleuzen Y. 2011. Synthèse des mesures d’auscultations et de contrôles – Prolongement du métro B de Lyon Gerland à Oullins-gare. Tunnels et Espace Souterrain 255: 193–210. [Google Scholar]
  • Finno RJ, Clough GW. 1985. Evaluation of soil response to EPB shield tunneling. J Geotech Eng 111(2): 155–173. [CrossRef] [Google Scholar]
  • Founta V, Ninic J, Whittle AJ, Meschke G, Stascheit J. 2013. Numerical Simulation of Ground Movements Due To EPB Tunnelling in Clay. In: Proceeding of the 3rd International Conference on Computational Methods in Tunnelling (Euro: Tun 2013), pp. 97–108. [Google Scholar]
  • Gilleron N, Bourgeois E, Saitta A. 2016. Lois anisotropes pour la prévision des tassements dus au creusement de tunnels superficiels. In: Actes des Journées Nationale de Géotechnique et de Géologie de l’Ingénieur, Nancy, 8 p. [Google Scholar]
  • Grave P, Dore V, Mordant E. 2012. Tramway T6 – Châtillon Viroflay link. Tunnels et Espace Souterrain 234: 533–541. [Google Scholar]
  • Hagiwara T, Grant RJ, Calvello M, Taylor RN. 1999. The effect of overlying strata on the distribution of ground movements induced by tunnelling in clay. Soils Found 39(3): 63–73. [CrossRef] [Google Scholar]
  • Hoek E. 1994. Strength of rock and rock masses. ISRM News J 2(2): 4–16. [Google Scholar]
  • Holtz R, Kovacs W. 1991. Introduction à la géotechnique. Presses de l’École Polytechnique de Montreal, 808 p. [Google Scholar]
  • Karakus M, Ozsan A, Basarir H. 2007. Finite element analysis for the twin metro tunnel constructed in Ankara Clay, Turkey. Bull Eng Geol Environ 66: 71–79. [CrossRef] [Google Scholar]
  • Kasper T, Meschke G. 2004. A 3D finite element simulation model for TBM tunnelling in soft ground. Int J Num Anal Methods Geomech 28: 1441–1460. [CrossRef] [Google Scholar]
  • Kavvadas M, Dimitris L, Ioannis V, Petros F. 2017. Development of a 3D finite element model for shield EPB tunnelling. Tunn Undergr Sp Technol 65: 32–34. [CrossRef] [Google Scholar]
  • Lambrughi A, Medina Rodriguez L, Castellanza R. 2012. Development and validation of a 3D numerical model for TBM–EPB mechanised excavations. Comp Geotech 40: 97–113. [CrossRef] [Google Scholar]
  • Lee K, Rowe R. 1990. Finite element modelling of the three dimensional ground deformations due to tunnelling in soft cohesive soils. Comp Geotech 10: 87–109; 111–138. [CrossRef] [Google Scholar]
  • Lee CJ, Wu BR, Chen HT, Chiang KH. 2006. Tunnel stability and arching effects during tunnelling in soft clayey soil. Tunn Undergr Sp Technol 21(2): 119–131. [CrossRef] [Google Scholar]
  • Lopes Dos Santos A, Puech A, Droniuc N, Geisler J, Cour F. 2018. Mesures de G à faibles déformations à partir d’une sonde pressiométrique monocellulaire. Champs-sur-Marne : JNGG, 8 p. [Google Scholar]
  • Losacco N, Viggiani G, Branque D, Berthoz N. 2015. ALE FE analysis of a laboratory test for the simulation of mechanised tunnelling in soft soil. Dubrovnik: ITA WTC 2015. [Google Scholar]
  • Mair RJ. 1979. Centrifugal modelling of tunnel construction in soft clay. PhD Thesis, Cambridge University. [Google Scholar]
  • Mair RJ, Taylor RN. 1997. Bored tunneling in the urban environment: State-of-the-art report and theme lecture. In: Proceedings of the 14th International Conference Soil Mechanic Foundation Engineering, Hamburg, pp. 2353–2385. [Google Scholar]
  • Melis M, Medina L, Rodriguez JM. 2002. Prediction and analysis of subsidence induced by shield tunnelling in the Madrid Metro extension. Can Geotech J 39: 1273–1287. [CrossRef] [Google Scholar]
  • Migliazza M, Chiorboli M, Giani GP. 2009. Comparison of analytical method, 3D finite element model with experimental subsidence measurements resulting from the extension of the Milan underground. Comp Geotech 36: 113–124. [CrossRef] [Google Scholar]
  • Möller SC, Vermeer PA. 2008. On numerical simulation of tunnel installation. Tunn Undergr Sp Technol 23: 461–475. [CrossRef] [Google Scholar]
  • Moyal P, Beaugendre N, Piljan JL, Lechantre G, Gauthier P. 2011. Extension of Paris metro line 12 from Porte de la Chapelle to Mairie d’Aubervilliers. In: Proceedings of AFTES International Congress, Lyon, France. [Google Scholar]
  • Mroueh H, Shahrour I. 2008. A simplified 3D model for tunnel construction using tunnel boring machines. Tunn Undergr Sp Technol 23: 38–45. [CrossRef] [Google Scholar]
  • Nagel F, Meschke G. 2011. Grout and bentonite flow around a TBM: Computational modeling and simulation-based assessment of influence on surface settlements. Tunn Undergr Sp Technol 26: 445–452. [CrossRef] [Google Scholar]
  • Nomoto T, Imamura S, Hagiwara T, Kusakabe O, Fujii N. 1999. Shield Tunnel Construction in Centrifuge. J Geotech Geoenviron Eng 125(4): 289–300. [CrossRef] [Google Scholar]
  • Panet M. 1995. Le calcul des tunnels par la méthode convergence-confinement. Paris : Presses des Ponts et Chaussées, 178 p. [Google Scholar]
  • Peck RB. 1969. Deep excavations and tunneling in soft ground. In: Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, State of the Art Volume, pp. 225–290. [Google Scholar]
  • Ring B, Comulada M. 2018. Practical numerical simulation of the effect of TBM process pressures on soil displacements through 3D shift iteration. Undergr Sp 3: 297–309. [CrossRef] [Google Scholar]
  • Savatier V, Deluzarche R, Serratrice JF. 2018. Variation des modules en fonction du niveau de déformation d’après des essais in-situ et des essais de laboratoire. Application au métro toulousain. Champs-sur-Marne : JNGG, 8 p. [Google Scholar]
  • Schanz T, Vermeer PA, Bonnier PG. 1999. The Hardening Soil Model: Formulation and verification. In: Beyond 2000 in Computational Geotechnics – 10 Years of PLAXIS, Proceedings of the 1st Symposium on Plaxis, CRC Press, 328 p. [Google Scholar]
  • Shiau J, Sams M. 2019. Relating volume loss and greenfield settlement. Tunn Undergr Sp Technol 83: 145–152. [CrossRef] [Google Scholar]
  • Skempton AV. 1986. Standard penetration test procedures. Géotechnique 36(3): 425–557. [CrossRef] [Google Scholar]
  • Thépot O. 2004. Prise en compte des caractéristiques en petites déformations des sols dans l’étude du comportement des collecteurs enterrés. Thèse de l’ École Nationale des Ponts et Chaussées. [Google Scholar]
  • Viggiani G, Atkinson JH. 1995. Stiffness of fine-grained soil at very small strains. Géotechnique 45(2): 249–265. [CrossRef] [Google Scholar]
  • Wongsaroj J, Borghi FX, Soga K, et al. 2006. Effect of TBM driving parameters on ground surface movements: Channel Tunnel Rail Link Contract 220. In: Proceedings of the 5th International Conference on Geotechnical Aspects of Underground Construction in Soft Ground, pp. 335–341. [Google Scholar]
  • Wu BR, Lee CJ. 2003. Ground movement and collapse mechanisms induced by tunnelling in clayey soil. Int J Phys Model Geotech 3(4): 13–27. [Google Scholar]
  • Wu L, Guan T, Lei L. 2013. Discrete element model for performance analysis of cutterhead excavation system of EPB machine. Tunn Undergr Sp Technol 37: 37–44. [CrossRef] [Google Scholar]
  • Xu Q, Zhu H, Ding W, Ge X. 2011. Laboratory model tests and field investigations of EPB shield machine tunnelling in soft ground in Shanghai. Tunn Undergr Sp Technol 26: 1–14. [CrossRef] [Google Scholar]
  • Yin ZY, Wang P, Zhang F. 2020. Effect of particle shape on the progressive failure of shield tunnel face in granular soils by coupled FDM-DEM method. Tunn Undergr Sp Technol 100: x–xx. [Google Scholar]
  • Zhang DM, Huan HW, Hu QF, Jiang F. 2015. Influence of multi-layered soil formation on shield tunnel lining behavior. Tunn Undergr Sp Technol 47: 123–135. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.