Free Access
Issue
Rev. Fr. Geotech.
Number 164, 2020
Article Number 1
Number of page(s) 20
DOI https://doi.org/10.1051/geotech/2020019
Published online 07 October 2020
  • Addenbrooke T, Potts D. 2001. Twin tunnel interaction: surface and subsurface effects. Int J Geomech 1: 249–271. [CrossRef] [Google Scholar]
  • AFNOR. 2013. NFP94-261 – Justification des ouvrages géotechniques : normes d’application nationale de l’Eurocode 7 – Fondations superficielles, 126 p. [Google Scholar]
  • AFTES GT4. 2000. Choix des techniques d’excavation mécanisée. Recommandation GT4 R3F1. Tunnels et Ouvrages Souterrains 157: 7–37. [Google Scholar]
  • AFTES GT16. 2018. Prise en compte des effets induits par le creusement sur les constructions avoisinantes dans la conception et la réalisation des ouvrages souterrains. Recommandation GT16 R2F1, 68 p. [Google Scholar]
  • Alsahly A, Stascheit J, Meschke G. 2016. Advanced finite element modeling of excavation and advancement processes in mechanized tunneling. Adv Eng Software 100: 198–214. [CrossRef] [Google Scholar]
  • Anagnostou G, Kovari K. 1996. Face stability conditions with Earth Pressure Balanced Shield. Tunn Undergr Sp Technol 11: 165–173. [CrossRef] [Google Scholar]
  • Aristaghes P, Autuori P. 2001. Calcul des tunnels au tunnelier. Revue Française de Géotechnique 97: 31–40. [CrossRef] [EDP Sciences] [Google Scholar]
  • Atkinson JH, Potts DM. 1977. Subsidence above shallow tunnel in soft ground. J Geotech Eng Division, ASCE GT4, pp. 307–325. [Google Scholar]
  • Berthoz N, Branque D, Subrin D, Wong H, Humbert E. 2012. Face failure in homogeneous and stratified soft ground: theoretical and experimental approaches on 1 g EPBS reduced-scale model. Tunn Undergr Sp Technol 30: 25–37. [CrossRef] [Google Scholar]
  • Berthoz N, Branque D, Wong H, Subrin D. 2018. TBM soft ground interaction: Experimental study on a 1 g reduced-scale EPBS model. Tunn Undergr Sp Technol 72: 189–209. [CrossRef] [Google Scholar]
  • Bolton MD. 1986. The strength and dilatancy of sands. Géotechnique 36(1): 65–78. [CrossRef] [Google Scholar]
  • Bouayad D, Emeriault F. 2017. Modeling the relationship between ground surface settlements induced by shield tunneling and the operational and geological parameters based on the hybrid PCA/ANFIS method. Tunn Undergr Sp Technol 68: 142–152. [CrossRef] [Google Scholar]
  • Chambon P, Corte JF. 1990. Stabilité du front de taille d’un tunnel dans un milieu frottant : approche cinématique en calcul à la rupture. Revue Française de Géotechnique 51: 51–59. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dias D, Kastner R. 2013. Movements caused by the excavation of tunnels using face pressurized shields – Analysis of monitoring and numerical modeling results. Eng Geol 152: 17–25. [CrossRef] [Google Scholar]
  • Dinadarloo SR, Siami-Irdemoosa E. 2015. Maximum surface settlement based classification of shallow tunnels in soft ground. Tunn Undergr Sp Technol 49: 320–327. [CrossRef] [Google Scholar]
  • Do NA, Dias D, Oreste P, Djeran-Maigre I. 2014. Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground. Tunn Undergr Sp Technol 42: 40–51. [CrossRef] [Google Scholar]
  • Fargnoli V, Boldini D, Amorosi A. 2013. TBM tunnelling-induced settlements in coarse-grained soils: The case of the new Milan underground line 5. Tunn Undergr Sp Technol 38: 336–347. [CrossRef] [Google Scholar]
  • Ferrari M, Krot R, Blondeau O, Prusak A, Panigoni T, Bleuzen Y. 2011. Synthèse des mesures d’auscultations et de contrôles – Prolongement du métro B de Lyon Gerland à Oullins-gare. Tunnels et Espace Souterrain 255: 193–210. [Google Scholar]
  • Finno RJ, Clough GW. 1985. Evaluation of soil response to EPB shield tunneling. J Geotech Eng 111(2): 155–173. [CrossRef] [Google Scholar]
  • Founta V, Ninic J, Whittle AJ, Meschke G, Stascheit J. 2013. Numerical Simulation of Ground Movements Due To EPB Tunnelling in Clay. In: Proceeding of the 3rd International Conference on Computational Methods in Tunnelling (Euro: Tun 2013), pp. 97–108. [Google Scholar]
  • Gilleron N, Bourgeois E, Saitta A. 2016. Lois anisotropes pour la prévision des tassements dus au creusement de tunnels superficiels. In: Actes des Journées Nationale de Géotechnique et de Géologie de l’Ingénieur, Nancy, 8 p. [Google Scholar]
  • Grave P, Dore V, Mordant E. 2012. Tramway T6 – Châtillon Viroflay link. Tunnels et Espace Souterrain 234: 533–541. [Google Scholar]
  • Hagiwara T, Grant RJ, Calvello M, Taylor RN. 1999. The effect of overlying strata on the distribution of ground movements induced by tunnelling in clay. Soils Found 39(3): 63–73. [CrossRef] [Google Scholar]
  • Hoek E. 1994. Strength of rock and rock masses. ISRM News J 2(2): 4–16. [Google Scholar]
  • Holtz R, Kovacs W. 1991. Introduction à la géotechnique. Presses de l’École Polytechnique de Montreal, 808 p. [Google Scholar]
  • Karakus M, Ozsan A, Basarir H. 2007. Finite element analysis for the twin metro tunnel constructed in Ankara Clay, Turkey. Bull Eng Geol Environ 66: 71–79. [CrossRef] [Google Scholar]
  • Kasper T, Meschke G. 2004. A 3D finite element simulation model for TBM tunnelling in soft ground. Int J Num Anal Methods Geomech 28: 1441–1460. [CrossRef] [Google Scholar]
  • Kavvadas M, Dimitris L, Ioannis V, Petros F. 2017. Development of a 3D finite element model for shield EPB tunnelling. Tunn Undergr Sp Technol 65: 32–34. [CrossRef] [Google Scholar]
  • Lambrughi A, Medina Rodriguez L, Castellanza R. 2012. Development and validation of a 3D numerical model for TBM–EPB mechanised excavations. Comp Geotech 40: 97–113. [CrossRef] [Google Scholar]
  • Lee K, Rowe R. 1990. Finite element modelling of the three dimensional ground deformations due to tunnelling in soft cohesive soils. Comp Geotech 10: 87–109; 111–138. [CrossRef] [Google Scholar]
  • Lee CJ, Wu BR, Chen HT, Chiang KH. 2006. Tunnel stability and arching effects during tunnelling in soft clayey soil. Tunn Undergr Sp Technol 21(2): 119–131. [CrossRef] [Google Scholar]
  • Lopes Dos Santos A, Puech A, Droniuc N, Geisler J, Cour F. 2018. Mesures de G à faibles déformations à partir d’une sonde pressiométrique monocellulaire. Champs-sur-Marne : JNGG, 8 p. [Google Scholar]
  • Losacco N, Viggiani G, Branque D, Berthoz N. 2015. ALE FE analysis of a laboratory test for the simulation of mechanised tunnelling in soft soil. Dubrovnik: ITA WTC 2015. [Google Scholar]
  • Mair RJ. 1979. Centrifugal modelling of tunnel construction in soft clay. PhD Thesis, Cambridge University. [Google Scholar]
  • Mair RJ, Taylor RN. 1997. Bored tunneling in the urban environment: State-of-the-art report and theme lecture. In: Proceedings of the 14th International Conference Soil Mechanic Foundation Engineering, Hamburg, pp. 2353–2385. [Google Scholar]
  • Melis M, Medina L, Rodriguez JM. 2002. Prediction and analysis of subsidence induced by shield tunnelling in the Madrid Metro extension. Can Geotech J 39: 1273–1287. [CrossRef] [Google Scholar]
  • Migliazza M, Chiorboli M, Giani GP. 2009. Comparison of analytical method, 3D finite element model with experimental subsidence measurements resulting from the extension of the Milan underground. Comp Geotech 36: 113–124. [CrossRef] [Google Scholar]
  • Möller SC, Vermeer PA. 2008. On numerical simulation of tunnel installation. Tunn Undergr Sp Technol 23: 461–475. [CrossRef] [Google Scholar]
  • Moyal P, Beaugendre N, Piljan JL, Lechantre G, Gauthier P. 2011. Extension of Paris metro line 12 from Porte de la Chapelle to Mairie d’Aubervilliers. In: Proceedings of AFTES International Congress, Lyon, France. [Google Scholar]
  • Mroueh H, Shahrour I. 2008. A simplified 3D model for tunnel construction using tunnel boring machines. Tunn Undergr Sp Technol 23: 38–45. [CrossRef] [Google Scholar]
  • Nagel F, Meschke G. 2011. Grout and bentonite flow around a TBM: Computational modeling and simulation-based assessment of influence on surface settlements. Tunn Undergr Sp Technol 26: 445–452. [CrossRef] [Google Scholar]
  • Nomoto T, Imamura S, Hagiwara T, Kusakabe O, Fujii N. 1999. Shield Tunnel Construction in Centrifuge. J Geotech Geoenviron Eng 125(4): 289–300. [CrossRef] [Google Scholar]
  • Panet M. 1995. Le calcul des tunnels par la méthode convergence-confinement. Paris : Presses des Ponts et Chaussées, 178 p. [Google Scholar]
  • Peck RB. 1969. Deep excavations and tunneling in soft ground. In: Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, State of the Art Volume, pp. 225–290. [Google Scholar]
  • Ring B, Comulada M. 2018. Practical numerical simulation of the effect of TBM process pressures on soil displacements through 3D shift iteration. Undergr Sp 3: 297–309. [CrossRef] [Google Scholar]
  • Savatier V, Deluzarche R, Serratrice JF. 2018. Variation des modules en fonction du niveau de déformation d’après des essais in-situ et des essais de laboratoire. Application au métro toulousain. Champs-sur-Marne : JNGG, 8 p. [Google Scholar]
  • Schanz T, Vermeer PA, Bonnier PG. 1999. The Hardening Soil Model: Formulation and verification. In: Beyond 2000 in Computational Geotechnics – 10 Years of PLAXIS, Proceedings of the 1st Symposium on Plaxis, CRC Press, 328 p. [Google Scholar]
  • Shiau J, Sams M. 2019. Relating volume loss and greenfield settlement. Tunn Undergr Sp Technol 83: 145–152. [CrossRef] [Google Scholar]
  • Skempton AV. 1986. Standard penetration test procedures. Géotechnique 36(3): 425–557. [CrossRef] [Google Scholar]
  • Thépot O. 2004. Prise en compte des caractéristiques en petites déformations des sols dans l’étude du comportement des collecteurs enterrés. Thèse de l’ École Nationale des Ponts et Chaussées. [Google Scholar]
  • Viggiani G, Atkinson JH. 1995. Stiffness of fine-grained soil at very small strains. Géotechnique 45(2): 249–265. [CrossRef] [Google Scholar]
  • Wongsaroj J, Borghi FX, Soga K, et al. 2006. Effect of TBM driving parameters on ground surface movements: Channel Tunnel Rail Link Contract 220. In: Proceedings of the 5th International Conference on Geotechnical Aspects of Underground Construction in Soft Ground, pp. 335–341. [Google Scholar]
  • Wu BR, Lee CJ. 2003. Ground movement and collapse mechanisms induced by tunnelling in clayey soil. Int J Phys Model Geotech 3(4): 13–27. [Google Scholar]
  • Wu L, Guan T, Lei L. 2013. Discrete element model for performance analysis of cutterhead excavation system of EPB machine. Tunn Undergr Sp Technol 37: 37–44. [CrossRef] [Google Scholar]
  • Xu Q, Zhu H, Ding W, Ge X. 2011. Laboratory model tests and field investigations of EPB shield machine tunnelling in soft ground in Shanghai. Tunn Undergr Sp Technol 26: 1–14. [CrossRef] [Google Scholar]
  • Yin ZY, Wang P, Zhang F. 2020. Effect of particle shape on the progressive failure of shield tunnel face in granular soils by coupled FDM-DEM method. Tunn Undergr Sp Technol 100: x–xx. [Google Scholar]
  • Zhang DM, Huan HW, Hu QF, Jiang F. 2015. Influence of multi-layered soil formation on shield tunnel lining behavior. Tunn Undergr Sp Technol 47: 123–135. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.