Accès gratuit
Rev. Fr. Geotech.
Numéro 164, 2020
Numéro d'article 2
Nombre de pages 23
Publié en ligne 2 novembre 2020
  • Anderson MP. 2005. Heat as a ground water tracer. Ground Water 43(6): 951–968. [CrossRef] [Google Scholar]
  • Bair ES, Parizec RR. 1978. Detection of permeability variations by a shallow geothermal technique. Ground Water 16(4): 254–263. [CrossRef] [Google Scholar]
  • Bakun-Mazor D, Hatzor YH, Glaser SD, Santamarina JC. 2013. Thermally vs. seismically induced block displacements in Masada rock slopes. Int J Rock Mech Min Sci 61: 196–211. [CrossRef] [Google Scholar]
  • Blasi C, Coïsson E. 2008. The effects of temperature on historical stone masonry structures. In: Proceeding of the 6th International Conference on Structural Analysis of Historic Construction, Bath, UK, 2: 1271–1276. [Google Scholar]
  • Brown LE, Hannah DM. 2007. Alpine stream temperature response to storm events. J Hydrometeorol 8: 952–967. [CrossRef] [Google Scholar]
  • Cassie D. 2006. The thermal regime of rivers: A review. Freshw Biol 51(8): 1389–1406. [CrossRef] [PubMed] [Google Scholar]
  • Collins BD, Stock GM. 2016. Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nat Geosci 9: 295–400. [CrossRef] [Google Scholar]
  • Covington MD, Luhmann AJ, Gabrovsek F, Saar MO, Wicks CM. 2011. Mechanisms of heat exchange between water and rock in karst conduits. Water Resour Res 47: W10514. [CrossRef] [Google Scholar]
  • Delmonaco G, Brini M, Cesaro G. 2017. Advanced monitoring systems for landslide risk reduction in the ’Siq’ of Petra (Jordan). In: Proceeding of the 26th International Symposium on Digital Workflows for Heritage Conservation, CIPA 2017, Ottawa, Canada. [Google Scholar]
  • do Amaral Vargas E, Velloso RQ, Chavez LE, Gusmao L, do Amaral CP. 2013. On the effect of thermally induced stresses in failures of some rock slopes in Rio de Janeiro, Brazil. Rock Mech Rock Eng 46(1): 123–134. [CrossRef] [Google Scholar]
  • EauFrance. 2017. Données hydrométriques. Stations sur le Gardon [Gardon réunis] à Remoulins. Période 2009–2017. Banque Hydro, Ministère de la Transition écologique et solidaire. [Google Scholar]
  • EauFrance. 2019. Données de la qualité des eaux de surface. Stations du Gardon. Interface Naïades. Ministère de la Transition écologique et solidaire. [Google Scholar]
  • Fabre G, Fiches JL, Paillet JL, (sous la direction de). 1991. L’aqueduc de Nîmes et le Pont du Gard. Archéologie, géosystème et histoire. Conseil Général du Gard, CNRS, 382 p. [Google Scholar]
  • Fiches JL, Paillet JL. 1989. Le pont du Gard : nouvelle approche du monument et de l’aqueduc. Comptes rendus des séances de l’Académie des Inscriptions et Belles-Lettres 133(2): 408–426. [Google Scholar]
  • Fiorucci M, Marmoni GM, Martino S, Mazzanti P. 2018. Thermal response of jointed rock masses inferred from infrared thermographic surveying (Acuto Test-Site, Italy). Sensors 18(7): 2221. [CrossRef] [Google Scholar]
  • Florides G, Kalogirou S. 2004. Measurements of Ground Temperature at Various Depths. In: Proceedings of the 3rd International Conference on Sustainable Energy Technologies, Nottingham, UK. [Google Scholar]
  • Froese C, Moreno F. 2007. Turtle Mountain field laboratory (TMFL): Part 1 – Overview and Activities. In: Proceedings of the 1st North American Landslide Conference, Vail, Colorado. [Google Scholar]
  • Gasc-Barbier M, Virely D, Guittard J. 2015. Thermal Fatigue in Rocks – La Roque-Gageac’ Case Study. In: Proceeding of the 13th ISRM International Congress of Rock Mechanics, Montreal, Canada. [Google Scholar]
  • Ge SM. 1998. Estimation of groundwater velocity in localized fracture zones from well temperature profiles. J Volcanol Geotherm Res 84(1-2): 93–101. [CrossRef] [Google Scholar]
  • Goguel J. 1965. Rapport de visite du Pont du Gard. Archives des Ponts et Chaussées du Gard, 8 p. [Google Scholar]
  • Goy L, Fabre D, Menard G. 1996. Modelling of Rock Temperatures for Deep Alpine Tunnel Projects. Rock Mech Rock Eng 29(1): 1–18. [CrossRef] [Google Scholar]
  • Greif V, Sassa K, Fukuoka H. 2006. Failure mechanism in an extremely slow rock slide at Bitchu-Matsuyama castle site (Japan). Landslides 3(1): 22–38. [CrossRef] [Google Scholar]
  • Greif V, Brcek M, Vlcko J, Varilova Z, Zvelebil J. 2017. Thermomechanical behavior of Pravcicka Brana Rock Arch (Czech Republic). Landslides 14(4): 1441–1445. [CrossRef] [Google Scholar]
  • Gunzburger Y, Merrien-Soukatchoff V, Guglielmi Y. 2005. Influence of daily surface temperature fluctuations on rock slope stability: case study of the Rochers de Valabres slope (France). Int J Rock Mech Mining Sci 42(3): 331–349. [CrossRef] [Google Scholar]
  • Hall K. 1999. The role of thermal stress fatigue in the breakdown of rock in cold regions. Geomorphology 31(1-4): 47–63. [NASA ADS] [CrossRef] [Google Scholar]
  • Hasler A, Gruber S, Haeberli W. 2011. Temperature variability and offset in steep alpine rock and ice faces. The Cryosphere 5: 977–988. [CrossRef] [Google Scholar]
  • Hayashi H, Tasaki M, Uchiyama N, Morita M. 2013. Water quality and pollution load during flood and non-flood periods in an urban tidal river. In: Actes de la 8e Conférence Internationale sur les Techniques et Stratégies Durables pour la Gestion des Eaux Urbaines par Temps de Pluie, NOVATECH 2013, Lyon, France, pp. 1–10. [Google Scholar]
  • Jenkins KA, Smith BJ. 1990. Daytime rock surface temperature variability and its implications for mechanical rock weathering: Tenerife, Canary Islands. Catena 17: 449–459. [CrossRef] [Google Scholar]
  • Klepikova MV, Le Borgne T, Bour O, Gallagher K, Hochreutener R, Lavenant N. 2014. Passive temperature tomography experiments to characterize transmissivity and connectivity of preferential flow paths in fractured media. J Hydrol 512: 549–562. [CrossRef] [Google Scholar]
  • Kobayashi D, Ishii Y, Kodama Y. 1999. Stream temperature, specific conductance and runoff process in mountain watersheds. Hydrol Process 13(6): 865–876. [CrossRef] [Google Scholar]
  • Lopez M, Philip H, Gilly JC, Rebai-Philip S, Puyraimond J. 2007. Analyse de la fabrique du substratum calcaire de la pile VII du Pont du Gard. Rapport d’analyse de terrain. Université de Montpellier, Géosciences Montpellier, 24 p. [Google Scholar]
  • Luetscher M, Jeannin PY. 2004. Temperature distribution in karst systems: the role of air and water fluxes. Terra Nova 16: 344–350. [CrossRef] [Google Scholar]
  • Luhmann AJ, Covington MD, Myre JM, et al. 2015. Thermal damping and retardation in karst conduits. Hydrol Earth Syst Sci 19: 137–157. [CrossRef] [Google Scholar]
  • Magne L, Lecoq N, Rodet J, Chedeville S, Viard JP. 2017. Evidence of daily and seasonal inversions of airflow in petites dales cave, Normandy, France. Acta Carsologica 46(2-3): 179–197. [Google Scholar]
  • Magnin F, Deline P, Ravanel L, Noetzli J, Pogliotti P. 2015 Thermal characteristics of permafrost in the steep alpine rock walls of the Aiguille du Midi (Mont Blanc Massif, 3842 m a.s.l) . The Cryosphere, Copernicus 2015: 109–121. [CrossRef] [Google Scholar]
  • Maréchal JC, Perrochet P, Tacher L. 1999. Long-term simulations of thermal and hydraulic characteristics in a mountain massif: the Mont-Blanc case study, French and Italian Alps. Hydrogeol J 7: 341–354. [CrossRef] [Google Scholar]
  • Merrien-Soukatchoff V, Gasc-Barbier M. 2017. Consequences of daily and annual thermal cycles on fracture propagation and rock slopes stability. In: Proceeding of the ISRM Conference on Progressive Rock Failure, Ascona, Switzerland, pp. 12–14. [Google Scholar]
  • Merrien-Soukatchoff V, Gunzburger Y, Clément C. 2010. Natural thermal strains close to surface of rock slopes. Measurement and modelling of the “Rochers de Valabres” case. In: Proceeding of the ISRM Conference on Rock Slope Stability, Paris, France, pp. 24–25. [Google Scholar]
  • Moore JR, Gischig V, Katterbach M, Loew S. 2011. Air circulation in deep fractures and the temperature field of an alpine rock slope. Earth Surf Process Landf 36(15): 1985–1996. [CrossRef] [Google Scholar]
  • Moreno F, Froese CR. 2007. Turtle Mountain Field Laboratory (TMFL): Part 2 – Review of Trends: 2003 to 2006. In: Proceedings of the 1st North American Landslide Conference, Vail, Colorado. [Google Scholar]
  • Moreno F, Froese CR. 2012. Turtle Mountain Field Laboratory, Alberta (NTS 82G): 2010 Data and Activity Summary. Energy Resources Conservation Board/Alberta Geological Survey, ERCB/AGS Open File Report 2012-03. [Google Scholar]
  • Mufundirwa A, Fujii Y, Kodama N, Kodama J. 2011 Analysis of natural rock slope deformations under temperature variation: A Case Study from Japan. In: Proceedings of the International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering, Vancouver, Canada. [Google Scholar]
  • O’Driscoll MA, DeWalle DR. 2006. Stream-air temperature relations to classify stream-ground water interactions in a karst setting, central Pennsylvania, USA. J Hydrol 329: 140–153. [CrossRef] [Google Scholar]
  • Paillet JL. 2005. Réflexions sur la construction du Pont du Gard. Gallia 62: 49–68. [CrossRef] [Google Scholar]
  • Parise M, Lollino P. 2011. A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy. Geomorphology 134(1-2): 132–143. [CrossRef] [Google Scholar]
  • Parise M, Gabrovsek F, Kaufmann G, Ravbar N. 2018. Advances in karst research: Theory, fieldwork and applications. London: Geological Society, Special Publications, 466: 1–24 [Google Scholar]
  • Pasten C, García M, Cortes DD. 2015. Physical and numerical modelling of the thermally induced wedging mechanism. Geotech Lett 5(3): 186–190. [CrossRef] [Google Scholar]
  • Pialot P. 2013. Suivi de l’aquifère des calcaires karstiques de l’urgonien du moyen Gardon. Synthèse 2011–2013. Direction du Développement Rural, Service de l’Eau et des Rivières, Conseil Général du Gard, CG30, 82 p. [Google Scholar]
  • Read RS, Langerberg W, Cruden D, et al. 2005. Frank Slide a century later: The Turtle Mountain monitoring project. In: Proceedings of the International Conference on Landslide Risk Management, Vancouver, Canada, pp. 713–723. [Google Scholar]
  • Read T, Bour O, Bense V, et al. 2013. Characterizing groundwater flow and heat transport in fractured rock using Fiber-Optic Distributed Temperature Sensing. Geophys Res Lett 40: 2055–2059. [CrossRef] [Google Scholar]
  • Rejeb A, Vouille G, Derlich S. 1990. Modélisation du comportement thermomécanique d’un massif granitique – Application à la simulation de l’expérience THM de Fanay-Augères. Rev Fr Geotech 53: 21–31. [CrossRef] [Google Scholar]
  • Rybach L, Busslinger A. 2013. Verification of rock temperature prediction along the Gotthard base tunnel – A prospect for coming tunnel projects. In: Proceeding of the World Tunnel Congress, WTC 2013, Geneva Underground – The way to the future, Switzerland. [Google Scholar]
  • Santo A, Del Prete S, Di Crescenzo G, Rotella M. 2007. Karst processes and slope instability: Some investigations in the carbonate Apennine of Campania (southern Italy). Geological Society, London, Special Publications 279: 59–72. [CrossRef] [Google Scholar]
  • Schneider PJ. 1974. Conduction Heat Transfer, 6th ed. Addison-Wesley, Reading, MA. [Google Scholar]
  • Stumm F, Chu A, Lange AD, Paillet FL, Williams JH, Lane JW Jr. 2001. Use of advanced borehole geophysical techniques to delineate fractured-rock ground-water flow and fractures along water-tunnel facilities in Northern Queens County. New York. U.S. Geological Survey, 12 p. [Google Scholar]
  • Subehi L, Fakhrudin M. 2011. Preliminary study of the changes in water temperature at pond Cibuntu. J Ecol Nat Environ 3(3): 72–77. [Google Scholar]
  • Subehi L, Fukushima T, Onda Y, et al. 2010a. The changes in steam water temperature and water quality parameters during rainfall events in forested watersh eds scaling of observations. Indones J Geogr 42(2): 159–180. [Google Scholar]
  • Subehi L, Fukushima T, Onda Y, et al. 2010b. Analysis of stream water temperature changes during rainfall events in forested watersheds. Limnology 11: 115–124. [CrossRef] [Google Scholar]
  • Sunden B., 2012. Introduction to heat transfer. Southampton, UK: WIT Press. [Google Scholar]
  • Taniguchi M. 1993. Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles. Water Resour Res 29(7): 2021–2026. [CrossRef] [Google Scholar]
  • VanSant JH. 1983. Conduction Heat Transfer Solutions. UCRL-52863 Rev. 1. Livermore, CA: University of California. [CrossRef] [Google Scholar]
  • Villarraga C, Vaunat J, Gasc-Barbier M. 2017. Modelling thermal induced damage in permeable rocks. In: Proceeding of the 9th Workshop on Code Bright, Barcelone, Spain. [Google Scholar]
  • Vlcko J, Greif V, Grof V, Jezny M, Petro L, Brcek M. 2009. Rock displacement and thermal expansion study at historic heritage sites in Slovakia. Environ Geol 58(8): 1727–1740. [CrossRef] [Google Scholar]
  • Vlcko J, Brcek M, Greif V. 2014. Deformations dynamics in response to seasonal temperature oscillations: An example from Pravcicka Brana Rock Arch (Czech Republic). Lands Sci Saf Geoenviron 3: 363–368. [CrossRef] [Google Scholar]
  • Warren J, Morgan AJ, Chao DK, Froese CR, Wood DE. 2014. Turtle Mountain Field Laboratory, Alberta (NTS 82G): 2012 Data and Activity Summary. Alberta Energy Regulator, AER/AGS Open File Report 2014-09, 16 p. [Google Scholar]
  • Williams G, Gold L. 1976. Ground temperatures. Canadian Building Digest 1976-07. National Research Council of Canada, Institute for Research in Construction, 7 p. [Google Scholar]
  • Zeiger SJ, Hubbart JA. 2015. Urban Stormwater temperature surges: A central US watershed Study. Hydrology 2(4): 193–209. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.