Accès gratuit
Numéro |
Rev. Fr. Geotech.
Numéro 165, 2020
Microstructure des matériaux argileux – conséquences pour l’ingénieur
|
|
---|---|---|
Numéro d'article | 4 | |
Nombre de pages | 9 | |
DOI | https://doi.org/10.1051/geotech/2020027 | |
Publié en ligne | 22 janvier 2021 |
- Alavez-Ramirez R, Montes-Garcia P, Martinez-Reyes J, Cristina Altamirano-Juarez D, Gochi-Ponce Y. 2012. The use of sugarcane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks. Constr Build Mater 34: 296–305. https://doi.org/10.1016/j.conbuildmat.2012.02.072. [CrossRef] [Google Scholar]
- Bell FG. 1996. Lime stabilization of clay minerals and soils. Eng Geol 42: 223–237. https://doi.org/10.1016/0013-7952(96)00028-2. [CrossRef] [Google Scholar]
- Bin-Shafique S, Rahman K, Yaykiran M, Azfar I. 2010. The long-term performance of two fly ash stabilized fine-grained soil subbases. Resour Conserv Recycl 54: 666–672. https://doi.org/10.1016/j.resconrec.2009.11.007. [CrossRef] [Google Scholar]
- Brandl H. 1981. Alteration of soil parameters by stabilization with lime. In: 10th International Conference on Soil Mechanics and Foundation Engineering − June 15–19, 1981, pp. 587–594. [Google Scholar]
- Burland JB, Rampello S, Georgiannou VN, Calabresi G. 1996. A laboratory study of the strength of four stiff clays. Géotechnique 46: 491–514. [CrossRef] [Google Scholar]
- Chevalier C, Haghighi I, Herrier G. 2012. Resistance to erosion of lime treated soils: a complete parametric study in laboratory. In: ICSE6 Paris − August 27-31 2012, pp. 1065–1072. [Google Scholar]
- Chittoori BCS, Puppala AJ, Pedarla A. 2018. Addressing clay mineralogy effects on performance of chemically stabilized expansive soils subjected to seasonal wetting and drying. J Geotech Geoenviron Eng 144: 04017097. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001796. [CrossRef] [Google Scholar]
- Consoli NC, da Silva K, Filho S, Rivoire AB. 2017. Compacted clay-industrial wastes blends: long-term performance under extreme freeze-thaw and wet-dry conditions. Appl Clay Sci 146: 404–410. https://doi.org/10.1016/j.clay.2017.06.032. [CrossRef] [Google Scholar]
- Cuisinier O, Masrouri F. 2004. Testing the hydromechanical behavior of a compacted swelling soil. Geotech Test J 27: 598–606. [Google Scholar]
- Cuisinier O, Masrouri F. 2005. Hydromechanical behaviour of a compacted swelling soil over a wide suction range. Eng Geol 81: 204–212. https://doi.org/10.1016/j.enggeo.2005.06.008. [CrossRef] [Google Scholar]
- Cuisinier O, Stoltz G, Masrouri F. 2014. Long-term behavior of lime-treated clayey soil exposed to successive drying and wetting. In: Geotechnical Special Publication, pp. 4146–4155. https://doi.org/10.1061/9780784413272.403. [Google Scholar]
- Delage P, Howat M, Cui Y. 1998. The relationship between suction and swelling properties in a heavily compacted unsaturated clay. Eng Geol 50: 31–48. https://doi.org/10.1016/S0013-7952(97)00083-5. [CrossRef] [Google Scholar]
- Delage P, Marcial D, Cui YJ, Ruiz X. 2006. Ageing effects in a compacted bentonite: a microstructure approach. Géotechnique 56: 291–304. [CrossRef] [Google Scholar]
- Dempsey BJ, Thompson MR. 1968. Durability properties of lime-soil mixtures. Highw Res Rec 235: 61–75. [Google Scholar]
- Dempsey BJ, Thompson MR. 1973. Effects of freeze-thaw parameters on the durability of stabilized materials. A report of the investigation of the durability testing of stabilized materials. University of Illinois Report Project IHR-401, pp. 10–18. [Google Scholar]
- Diamond S. 1971. Microstructure and pore structure of impact-compacted clays. Clays Clay Miner 19: 239–249. [CrossRef] [Google Scholar]
- Gasparre A, Coop MR. 2008. Quantification of the effects of structure on the compression of a stiff clay. Can Geotech J 49: 1324–1334. [CrossRef] [Google Scholar]
- Guney Y, Sari D, Cetin M, Tuncan M. 2007. Impact of cyclic wetting-drying on swelling behavior of lime-stabilized soil. Build Environ 42: 681–688. https://doi.org/10.1016/j.buildenv.2005.10.035. [CrossRef] [Google Scholar]
- Gutschick KA. 1978. Lime stabilization under hydraulic conditions. In: 4th Lime Congress, pp. 1–20. [Google Scholar]
- Juang CH, Holtz RD. 1986. A probabilistic permeability model and the pore size density function. Int J Numer Anal Methods Geomech 10: 543–553. https://doi.org/10.1002/nag.1610100506. [CrossRef] [Google Scholar]
- Kafodya I, Okonta F. 2018. Effects of natural fiber inclusions and pre-compression on the strength properties of lime-fly ash stabilised soil. Constr Build Mater 170: 737–746. https://doi.org/10.1016/j.conbuildmat.2018.02.194. [CrossRef] [Google Scholar]
- Kelley CM. 1988. A long range durability study of lime stabilized bases at military posts in the southwest. Bulletin 328, 2nd edition. [Google Scholar]
- Kenai S, Bahar R, Benazzoug M. 2006. Experimental analysis of the effect of some compaction methods on mechanical properties and durability of cement stabilized soil. J Mater Sci 41: 6956–6964. https://doi.org/10.1007/s10853-006-0226-1. [CrossRef] [Google Scholar]
- Khattab AS. 2002. Comportement mécanique d’une argile gonflante stabilisée à la chaux. PhD thesis, École Centrale de Paris, 263 p. [Google Scholar]
- Khattab SA, Al-Mukhtar M, Fleureau J-M. 2007. Long-term stability characteristics of a lime-treated plastic soil. J Mater Civ Eng 19: 358–366. [CrossRef] [Google Scholar]
- Leroueil S, Vaughan PR. 1990. The general and congruent effects of structure in natural soils and weak rocks. Géotechnique 40: 467–488. [CrossRef] [Google Scholar]
- Le Runigo B, Cuisinier O, Cui Y-J, Ferber V, Deneele D. 2009. Impact of initial state on the fabric and permeability of a lime-treated silt under long-term leaching. Can Geotech J 46: 1243–1257. https://doi.org/10.1139/T09-061. [CrossRef] [Google Scholar]
- Le Runigo B, Ferber V, Cui YJ, Cuisinier O, Deneele D. 2011. Performance of lime-treated silty soil under long-term hydraulic conditions. Eng Geol 118: 20–28. https://doi.org/10.1016/j.enggeo.2010.12.002. [CrossRef] [Google Scholar]
- Little DN. 1995. Handbook for stabilization of pavement subgrades and base courses with lime. National Lime Association, 219 p. [Google Scholar]
- Lloret A, Villar MV, Sánchez M, Gens A, Pintado X, Alonso EE. 2003. Mechanical behaviour of heavily compacted bentonite under high suction changes. Géotechnique 53: 27–40. https://doi.org/10.1680/geot.2003.53.1.27. [CrossRef] [Google Scholar]
- McCallister LD, Petry TM. 1991. Physical property changes in a lime-treated expansive clay caused by leaching. Transp Res Rec 1295: 37–44. [Google Scholar]
- Mehenni A, Cuisinier O, Masrouri F. 2015. Hydro-mechanical behavior and erodability of treated soils: short term effects and sustainability. In: Proceedings of the 16th European Conference on Soil Mechanics and Geotechnical Engineering. Edimburgh, pp. 2817–2822. [Google Scholar]
- Mehenni A, Cuisinier O, Masrouri F. 2016. Impact of lime, cement, and clay treatments on the internal erosion of compacted soils. J Mater Civ Eng 28: 04016071. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001573. [CrossRef] [Google Scholar]
- Moghal AAB, Kareem Obaid AA, Al-Refeai TO, Al-Shamrani MA. 2015. Compressibility and durability characteristics of lime treated expansive semiarid soils. J Test Eval 43: 20140060. https://doi.org/10.1520/JTE20140060. [CrossRef] [Google Scholar]
- Nalbantoglu Z, Tuncer ER. 2001. Compressibility and hydraulic conductivity of a chemically treated expansive clay. Can Geotech J 38: 154–160. [Google Scholar]
- Stoltz G, Cuisinier O, Masrouri F. 2014. Weathering of a lime-treated clayey soil by drying and wetting cycles. Eng Geol 181: 281–289. https://doi.org/10.1016/j.enggeo.2014.08.013. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.