Free Access
Issue |
Rev. Fr. Geotech.
Number 165, 2020
Microstructure des matériaux argileux – conséquences pour l’ingénieur
|
|
---|---|---|
Article Number | 4 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/geotech/2020027 | |
Published online | 22 January 2021 |
- Alavez-Ramirez R, Montes-Garcia P, Martinez-Reyes J, Cristina Altamirano-Juarez D, Gochi-Ponce Y. 2012. The use of sugarcane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks. Constr Build Mater 34: 296–305. https://doi.org/10.1016/j.conbuildmat.2012.02.072. [CrossRef] [Google Scholar]
- Bell FG. 1996. Lime stabilization of clay minerals and soils. Eng Geol 42: 223–237. https://doi.org/10.1016/0013-7952(96)00028-2. [CrossRef] [Google Scholar]
- Bin-Shafique S, Rahman K, Yaykiran M, Azfar I. 2010. The long-term performance of two fly ash stabilized fine-grained soil subbases. Resour Conserv Recycl 54: 666–672. https://doi.org/10.1016/j.resconrec.2009.11.007. [CrossRef] [Google Scholar]
- Brandl H. 1981. Alteration of soil parameters by stabilization with lime. In: 10th International Conference on Soil Mechanics and Foundation Engineering − June 15–19, 1981, pp. 587–594. [Google Scholar]
- Burland JB, Rampello S, Georgiannou VN, Calabresi G. 1996. A laboratory study of the strength of four stiff clays. Géotechnique 46: 491–514. [CrossRef] [Google Scholar]
- Chevalier C, Haghighi I, Herrier G. 2012. Resistance to erosion of lime treated soils: a complete parametric study in laboratory. In: ICSE6 Paris − August 27-31 2012, pp. 1065–1072. [Google Scholar]
- Chittoori BCS, Puppala AJ, Pedarla A. 2018. Addressing clay mineralogy effects on performance of chemically stabilized expansive soils subjected to seasonal wetting and drying. J Geotech Geoenviron Eng 144: 04017097. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001796. [CrossRef] [Google Scholar]
- Consoli NC, da Silva K, Filho S, Rivoire AB. 2017. Compacted clay-industrial wastes blends: long-term performance under extreme freeze-thaw and wet-dry conditions. Appl Clay Sci 146: 404–410. https://doi.org/10.1016/j.clay.2017.06.032. [CrossRef] [Google Scholar]
- Cuisinier O, Masrouri F. 2004. Testing the hydromechanical behavior of a compacted swelling soil. Geotech Test J 27: 598–606. [Google Scholar]
- Cuisinier O, Masrouri F. 2005. Hydromechanical behaviour of a compacted swelling soil over a wide suction range. Eng Geol 81: 204–212. https://doi.org/10.1016/j.enggeo.2005.06.008. [CrossRef] [Google Scholar]
- Cuisinier O, Stoltz G, Masrouri F. 2014. Long-term behavior of lime-treated clayey soil exposed to successive drying and wetting. In: Geotechnical Special Publication, pp. 4146–4155. https://doi.org/10.1061/9780784413272.403. [Google Scholar]
- Delage P, Howat M, Cui Y. 1998. The relationship between suction and swelling properties in a heavily compacted unsaturated clay. Eng Geol 50: 31–48. https://doi.org/10.1016/S0013-7952(97)00083-5. [CrossRef] [Google Scholar]
- Delage P, Marcial D, Cui YJ, Ruiz X. 2006. Ageing effects in a compacted bentonite: a microstructure approach. Géotechnique 56: 291–304. [CrossRef] [Google Scholar]
- Dempsey BJ, Thompson MR. 1968. Durability properties of lime-soil mixtures. Highw Res Rec 235: 61–75. [Google Scholar]
- Dempsey BJ, Thompson MR. 1973. Effects of freeze-thaw parameters on the durability of stabilized materials. A report of the investigation of the durability testing of stabilized materials. University of Illinois Report Project IHR-401, pp. 10–18. [Google Scholar]
- Diamond S. 1971. Microstructure and pore structure of impact-compacted clays. Clays Clay Miner 19: 239–249. [CrossRef] [Google Scholar]
- Gasparre A, Coop MR. 2008. Quantification of the effects of structure on the compression of a stiff clay. Can Geotech J 49: 1324–1334. [CrossRef] [Google Scholar]
- Guney Y, Sari D, Cetin M, Tuncan M. 2007. Impact of cyclic wetting-drying on swelling behavior of lime-stabilized soil. Build Environ 42: 681–688. https://doi.org/10.1016/j.buildenv.2005.10.035. [CrossRef] [Google Scholar]
- Gutschick KA. 1978. Lime stabilization under hydraulic conditions. In: 4th Lime Congress, pp. 1–20. [Google Scholar]
- Juang CH, Holtz RD. 1986. A probabilistic permeability model and the pore size density function. Int J Numer Anal Methods Geomech 10: 543–553. https://doi.org/10.1002/nag.1610100506. [CrossRef] [Google Scholar]
- Kafodya I, Okonta F. 2018. Effects of natural fiber inclusions and pre-compression on the strength properties of lime-fly ash stabilised soil. Constr Build Mater 170: 737–746. https://doi.org/10.1016/j.conbuildmat.2018.02.194. [CrossRef] [Google Scholar]
- Kelley CM. 1988. A long range durability study of lime stabilized bases at military posts in the southwest. Bulletin 328, 2nd edition. [Google Scholar]
- Kenai S, Bahar R, Benazzoug M. 2006. Experimental analysis of the effect of some compaction methods on mechanical properties and durability of cement stabilized soil. J Mater Sci 41: 6956–6964. https://doi.org/10.1007/s10853-006-0226-1. [CrossRef] [Google Scholar]
- Khattab AS. 2002. Comportement mécanique d’une argile gonflante stabilisée à la chaux. PhD thesis, École Centrale de Paris, 263 p. [Google Scholar]
- Khattab SA, Al-Mukhtar M, Fleureau J-M. 2007. Long-term stability characteristics of a lime-treated plastic soil. J Mater Civ Eng 19: 358–366. [CrossRef] [Google Scholar]
- Leroueil S, Vaughan PR. 1990. The general and congruent effects of structure in natural soils and weak rocks. Géotechnique 40: 467–488. [CrossRef] [Google Scholar]
- Le Runigo B, Cuisinier O, Cui Y-J, Ferber V, Deneele D. 2009. Impact of initial state on the fabric and permeability of a lime-treated silt under long-term leaching. Can Geotech J 46: 1243–1257. https://doi.org/10.1139/T09-061. [CrossRef] [Google Scholar]
- Le Runigo B, Ferber V, Cui YJ, Cuisinier O, Deneele D. 2011. Performance of lime-treated silty soil under long-term hydraulic conditions. Eng Geol 118: 20–28. https://doi.org/10.1016/j.enggeo.2010.12.002. [CrossRef] [Google Scholar]
- Little DN. 1995. Handbook for stabilization of pavement subgrades and base courses with lime. National Lime Association, 219 p. [Google Scholar]
- Lloret A, Villar MV, Sánchez M, Gens A, Pintado X, Alonso EE. 2003. Mechanical behaviour of heavily compacted bentonite under high suction changes. Géotechnique 53: 27–40. https://doi.org/10.1680/geot.2003.53.1.27. [CrossRef] [Google Scholar]
- McCallister LD, Petry TM. 1991. Physical property changes in a lime-treated expansive clay caused by leaching. Transp Res Rec 1295: 37–44. [Google Scholar]
- Mehenni A, Cuisinier O, Masrouri F. 2015. Hydro-mechanical behavior and erodability of treated soils: short term effects and sustainability. In: Proceedings of the 16th European Conference on Soil Mechanics and Geotechnical Engineering. Edimburgh, pp. 2817–2822. [Google Scholar]
- Mehenni A, Cuisinier O, Masrouri F. 2016. Impact of lime, cement, and clay treatments on the internal erosion of compacted soils. J Mater Civ Eng 28: 04016071. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001573. [CrossRef] [Google Scholar]
- Moghal AAB, Kareem Obaid AA, Al-Refeai TO, Al-Shamrani MA. 2015. Compressibility and durability characteristics of lime treated expansive semiarid soils. J Test Eval 43: 20140060. https://doi.org/10.1520/JTE20140060. [CrossRef] [Google Scholar]
- Nalbantoglu Z, Tuncer ER. 2001. Compressibility and hydraulic conductivity of a chemically treated expansive clay. Can Geotech J 38: 154–160. [Google Scholar]
- Stoltz G, Cuisinier O, Masrouri F. 2014. Weathering of a lime-treated clayey soil by drying and wetting cycles. Eng Geol 181: 281–289. https://doi.org/10.1016/j.enggeo.2014.08.013. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.