Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 169, 2021
Hommage à Pierre Habib et Pierre Duffaut
Numéro d'article 6
Nombre de pages 7
DOI https://doi.org/10.1051/geotech/2021020
Publié en ligne 15 octobre 2021
  • Beeler N, Tullis TE, Goldsby DL. 2008. Constitutive relationships and physical basis of fault strength due to flash heating. J Geophys Res 113(B1): B01401. [Google Scholar]
  • Brantut N, Sulem J, Schubnel A. 2011. Effect of dehydration reactions on earthquake nucleation: stable sliding, slow transients, and unstable slip. J Geophys Res 116(B5): 1–16. [Google Scholar]
  • Brantut N, Sulem J. 2012. Strain Localization and slip instability in a strain-rate hardening, chemically weakening material. J Appl Mech 79(3): 031004. [CrossRef] [Google Scholar]
  • Chen J, Niemeijer A, Yao L, Ma S. 2017. Water vaporization promotes coseismic fluid pressurization and buffers temperature rise. Geophys Res Lett 44: 2177–2185. [CrossRef] [Google Scholar]
  • Collettini C, Carpenter B, Viti C, et al. 2014. Fault structure and slip localization in carbonate-bearing normal faults: an example from the Northern Apennines of Italy. J Struct Geol 67: 154–66. [CrossRef] [Google Scholar]
  • De Paola N, Collettini C, Faulkner DR, Trippetta F. 2008. Fault zone architecture and deformation processes within evaporitic rocks in the upper crust. Tectonics 27(4): 1–21. [Google Scholar]
  • Dieterich JH. 1979. Modeling of rock friction: 1. Experimental results and constitutive equations. J Geophys Res 84(9): 2161–2168. [CrossRef] [Google Scholar]
  • Di Toro G, Goldsby DL, Tullis TE. 2004. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature 427: 774–777. [Google Scholar]
  • Famin V, Nakashima S, Boullier A-M., Fujimoto K, Hirono T. 2008. Earthquakes produce carbon dioxide in crustal faults. Earth Planet Sci Lett 265: 487–497. [CrossRef] [Google Scholar]
  • Ghabezloo S, Sulem J. 2008. Stress dependent thermal pressurization of a fluid-saturated rock. Rock Mech Rock Eng 42(1): 1–24. [Google Scholar]
  • Goguel J, Pachoud A. 1972. Géologie et dynamique de l’écroulement du Mont Granier dans le massif de la Chartreuse. Bull BRGM III-1: 29–38. [Google Scholar]
  • Goren L, Aharonov E, Anders MH. 2010. The long runout of the Heart Mountain landslide: Heating, pressurization, and carbonate decomposition. J Geophys Res Solid Earth 115: 1–15. [Google Scholar]
  • Habib P. 1967. Sur un mode de glissement des massifs rocheux. C R Acad Sci Paris 264: 151–153. [Google Scholar]
  • Habib P. 1975. Production of gaseous pore pressure during rock slides. Rock Mech 7(4): 193–197. [CrossRef] [Google Scholar]
  • Han R, Hirose T, Shimamoto T. 2010. Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates. J Geophys Res Solid Earth 115(3). [Google Scholar]
  • Hauge TA. 1993. The Heart Mountain detachment, Northwestern Wyoming; 100 years of controversy. In: Snoke AW, Steidtmann JR, Roberts SM, eds. Geology of Wyoming: Memoir. Laramie, WY: Geological Survey of Wyoming, pp. 530–571. [Google Scholar]
  • Lachenbruch AH. 1980. Frictional heating, fluid pressure, and the resistance to fault motion. J Geophys Res 85: 6097–6112. [CrossRef] [Google Scholar]
  • Mase CW, Smith L. 1987. Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault. J Geophys Res 92(1): 6249. [CrossRef] [Google Scholar]
  • Mitchell TM, Smith SAF, Anders MH, et al. 2015. Catastrophic emplacement of giant landslides aided by thermal decomposition Heart Mountain, Wyoming. Earth Planet Sci Lett 411: 199–207. [CrossRef] [Google Scholar]
  • Niemeijer A, Di Toro G, Griffith AW, Bistacchi A, Smith SAF, Nielsen S. 2012. Inferring earthquake physics and chemistry using an integrated field and laboratory approach. J Struct Geol 39: 2–36. [CrossRef] [Google Scholar]
  • Platt JD, Rudnicki JW, Rice JR. 2014. Stability and localization of rapid shear in fluid-saturated fault gouge: 2. Localized zone width and strength evolution. J Geophys Res Solid Earth 119(5): 4334–4359. [CrossRef] [Google Scholar]
  • Rattez H, Stefanou I, Sulem J. 2018a. The importance of thermo-hydro-mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part I: Theory and linear stability analysis. J Mech Phys Solids 115: 54–76. [CrossRef] [Google Scholar]
  • Rattez H, Stefanou I, Sulem J, Veveakis M, Poulet T. 2018b. The importance of thermo-hydro-mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part II: Numerical implementation and post-bifurcation analysis. J Mech Phys Solids 115: 1–29. [CrossRef] [Google Scholar]
  • Rice JR. 2006. Heating and weakening of faults during earthquake slip. J Geophys Res 111(B5): B05311. [Google Scholar]
  • Rice JR, Rudnicki JW, Platt JD. 2014. Stability and localization of rapid shear in fluid-saturated fault gouge, 1. Linearized stability analysis. J Geophys Res Solid Earth 119 (5): 4311–4333. [CrossRef] [Google Scholar]
  • Sato T, Takahashi M. 1997. Geochemical changes in anomalously discharged groundwater in Awaji Island − after the 1995 Kobe earthquake. Chikyukagaku 31: 89–98. [Google Scholar]
  • Sulem J, Vardoulakis I, Ouffroukh H, Boulon M, Hans J. 2004. Experimental characterization of the thermo-poro-mechanical properties of the Aegion Fault gouge. C R Geosci 336(4–5): 455–466. [CrossRef] [Google Scholar]
  • Sulem J, Vardoulakis I, Ouffroukh H, Perdikatsis V. 2005. Thermo-poro-mechanical properties of the Aigion Fault clayey gouge − Application to the analysis of shear heating and fluid pressurization. Soils Found 45(2): 97–108. [CrossRef] [Google Scholar]
  • Sulem J, Lazar P, Vardoulakis I. 2007. Thermo-poro-mechanical properties of clayey gouge and application to rapid fault shearing. Int J Numer Anal Methods Geomech 31(3): 523–540. [CrossRef] [Google Scholar]
  • Sulem J, Famin V. 2009. Thermal decomposition of carbonates in fault zones: slip-weakening and temperature-limiting effects. J Geophys Res 114(B3): 1–14. [Google Scholar]
  • Sulem J, Stefanou I, Veveakis M. 2011. Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure. Granul Matter 13(3): 261–268. [CrossRef] [Google Scholar]
  • Vardoulakis I. 2000. Catastrophic landslides due to frictional heating of the failure plane. Mech Cohes Frict Mater 5(6): 443–467. [CrossRef] [Google Scholar]
  • Vardoulakis I. 2002. Dynamic thermo-poro-mechanical analysis of catastrophic landslides. Géotechnique 52(3): 157–171. [CrossRef] [Google Scholar]
  • Vardoulakis I, Sulem J. 1995. Bifurcation analysis in geomechanics. CRC Press, Taylor & Francis. [Google Scholar]
  • Veveakis M, Sulem J, Stefanou I. 2012. Modeling of fault gouges with Cosserat continuum mechanics: influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms. J Struct Geol 38: 254–264. [CrossRef] [Google Scholar]
  • Wibberley CAJ. 2002. Hydraulic diffusivity of fault gouge zones and implications for thermal pressurization during seismic slip. Earth Planets Space 1: 1153–1171. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.