Free Access
Issue |
Rev. Fr. Geotech.
Number 169, 2021
Hommage à Pierre Habib et Pierre Duffaut
|
|
---|---|---|
Article Number | 6 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/geotech/2021020 | |
Published online | 15 October 2021 |
- Beeler N, Tullis TE, Goldsby DL. 2008. Constitutive relationships and physical basis of fault strength due to flash heating. J Geophys Res 113(B1): B01401. [Google Scholar]
- Brantut N, Sulem J, Schubnel A. 2011. Effect of dehydration reactions on earthquake nucleation: stable sliding, slow transients, and unstable slip. J Geophys Res 116(B5): 1–16. [Google Scholar]
- Brantut N, Sulem J. 2012. Strain Localization and slip instability in a strain-rate hardening, chemically weakening material. J Appl Mech 79(3): 031004. [CrossRef] [Google Scholar]
- Chen J, Niemeijer A, Yao L, Ma S. 2017. Water vaporization promotes coseismic fluid pressurization and buffers temperature rise. Geophys Res Lett 44: 2177–2185. [CrossRef] [Google Scholar]
- Collettini C, Carpenter B, Viti C, et al. 2014. Fault structure and slip localization in carbonate-bearing normal faults: an example from the Northern Apennines of Italy. J Struct Geol 67: 154–66. [CrossRef] [Google Scholar]
- De Paola N, Collettini C, Faulkner DR, Trippetta F. 2008. Fault zone architecture and deformation processes within evaporitic rocks in the upper crust. Tectonics 27(4): 1–21. [Google Scholar]
- Dieterich JH. 1979. Modeling of rock friction: 1. Experimental results and constitutive equations. J Geophys Res 84(9): 2161–2168. [CrossRef] [Google Scholar]
- Di Toro G, Goldsby DL, Tullis TE. 2004. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature 427: 774–777. [Google Scholar]
- Famin V, Nakashima S, Boullier A-M., Fujimoto K, Hirono T. 2008. Earthquakes produce carbon dioxide in crustal faults. Earth Planet Sci Lett 265: 487–497. [CrossRef] [Google Scholar]
- Ghabezloo S, Sulem J. 2008. Stress dependent thermal pressurization of a fluid-saturated rock. Rock Mech Rock Eng 42(1): 1–24. [Google Scholar]
- Goguel J, Pachoud A. 1972. Géologie et dynamique de l’écroulement du Mont Granier dans le massif de la Chartreuse. Bull BRGM III-1: 29–38. [Google Scholar]
- Goren L, Aharonov E, Anders MH. 2010. The long runout of the Heart Mountain landslide: Heating, pressurization, and carbonate decomposition. J Geophys Res Solid Earth 115: 1–15. [Google Scholar]
- Habib P. 1967. Sur un mode de glissement des massifs rocheux. C R Acad Sci Paris 264: 151–153. [Google Scholar]
- Habib P. 1975. Production of gaseous pore pressure during rock slides. Rock Mech 7(4): 193–197. [CrossRef] [Google Scholar]
- Han R, Hirose T, Shimamoto T. 2010. Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates. J Geophys Res Solid Earth 115(3). [Google Scholar]
- Hauge TA. 1993. The Heart Mountain detachment, Northwestern Wyoming; 100 years of controversy. In: Snoke AW, Steidtmann JR, Roberts SM, eds. Geology of Wyoming: Memoir. Laramie, WY: Geological Survey of Wyoming, pp. 530–571. [Google Scholar]
- Lachenbruch AH. 1980. Frictional heating, fluid pressure, and the resistance to fault motion. J Geophys Res 85: 6097–6112. [CrossRef] [Google Scholar]
- Mase CW, Smith L. 1987. Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault. J Geophys Res 92(1): 6249. [CrossRef] [Google Scholar]
- Mitchell TM, Smith SAF, Anders MH, et al. 2015. Catastrophic emplacement of giant landslides aided by thermal decomposition Heart Mountain, Wyoming. Earth Planet Sci Lett 411: 199–207. [CrossRef] [Google Scholar]
- Niemeijer A, Di Toro G, Griffith AW, Bistacchi A, Smith SAF, Nielsen S. 2012. Inferring earthquake physics and chemistry using an integrated field and laboratory approach. J Struct Geol 39: 2–36. [CrossRef] [Google Scholar]
- Platt JD, Rudnicki JW, Rice JR. 2014. Stability and localization of rapid shear in fluid-saturated fault gouge: 2. Localized zone width and strength evolution. J Geophys Res Solid Earth 119(5): 4334–4359. [CrossRef] [Google Scholar]
- Rattez H, Stefanou I, Sulem J. 2018a. The importance of thermo-hydro-mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part I: Theory and linear stability analysis. J Mech Phys Solids 115: 54–76. [CrossRef] [Google Scholar]
- Rattez H, Stefanou I, Sulem J, Veveakis M, Poulet T. 2018b. The importance of thermo-hydro-mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part II: Numerical implementation and post-bifurcation analysis. J Mech Phys Solids 115: 1–29. [CrossRef] [Google Scholar]
- Rice JR. 2006. Heating and weakening of faults during earthquake slip. J Geophys Res 111(B5): B05311. [Google Scholar]
- Rice JR, Rudnicki JW, Platt JD. 2014. Stability and localization of rapid shear in fluid-saturated fault gouge, 1. Linearized stability analysis. J Geophys Res Solid Earth 119 (5): 4311–4333. [CrossRef] [Google Scholar]
- Sato T, Takahashi M. 1997. Geochemical changes in anomalously discharged groundwater in Awaji Island − after the 1995 Kobe earthquake. Chikyukagaku 31: 89–98. [Google Scholar]
- Sulem J, Vardoulakis I, Ouffroukh H, Boulon M, Hans J. 2004. Experimental characterization of the thermo-poro-mechanical properties of the Aegion Fault gouge. C R Geosci 336(4–5): 455–466. [CrossRef] [Google Scholar]
- Sulem J, Vardoulakis I, Ouffroukh H, Perdikatsis V. 2005. Thermo-poro-mechanical properties of the Aigion Fault clayey gouge − Application to the analysis of shear heating and fluid pressurization. Soils Found 45(2): 97–108. [CrossRef] [Google Scholar]
- Sulem J, Lazar P, Vardoulakis I. 2007. Thermo-poro-mechanical properties of clayey gouge and application to rapid fault shearing. Int J Numer Anal Methods Geomech 31(3): 523–540. [CrossRef] [Google Scholar]
- Sulem J, Famin V. 2009. Thermal decomposition of carbonates in fault zones: slip-weakening and temperature-limiting effects. J Geophys Res 114(B3): 1–14. [Google Scholar]
- Sulem J, Stefanou I, Veveakis M. 2011. Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure. Granul Matter 13(3): 261–268. [CrossRef] [Google Scholar]
- Vardoulakis I. 2000. Catastrophic landslides due to frictional heating of the failure plane. Mech Cohes Frict Mater 5(6): 443–467. [CrossRef] [Google Scholar]
- Vardoulakis I. 2002. Dynamic thermo-poro-mechanical analysis of catastrophic landslides. Géotechnique 52(3): 157–171. [CrossRef] [Google Scholar]
- Vardoulakis I, Sulem J. 1995. Bifurcation analysis in geomechanics. CRC Press, Taylor & Francis. [Google Scholar]
- Veveakis M, Sulem J, Stefanou I. 2012. Modeling of fault gouges with Cosserat continuum mechanics: influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms. J Struct Geol 38: 254–264. [CrossRef] [Google Scholar]
- Wibberley CAJ. 2002. Hydraulic diffusivity of fault gouge zones and implications for thermal pressurization during seismic slip. Earth Planets Space 1: 1153–1171. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.