Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 173, 2022
Numéro d'article 1
Nombre de pages 10
DOI https://doi.org/10.1051/geotech/2022014
Publié en ligne 23 septembre 2022
  • Baldi G, Bruzzi R, Superbo M, Battaglio E, Jamiolkowski M. 1986. Interpretation of CPTs and CPTUs; 2nd part: drained penetration of sands. In: Proceedings of the 4th International Geotechnical Seminar, Singapour, pp. 143–156. [Google Scholar]
  • Bellotti R, Grippa V, Robertson PK, Jamiolkowski M, Robertson PK. 1987. Self-boring pressuremeter in pluvially deposited sand. ENEL-CRIS. Milan: USACE. [Google Scholar]
  • Bellotti R, Ghionna V, Jamiolkowski M, Robertson PK, Peterson RW. 1989. Interpretation of moduli from self-boring pressuremeter in sand. Geotechnique 39(2): 269–292. [CrossRef] [Google Scholar]
  • Bouguerra H. 1997. Prévision du potentiel de liquéfaction des sites sableux à l’aide d’appareillages in situ [Prediction of the liquefaction potential of sandy sites using in-situ test]. PhD INPG Grenoble, 370 p (in French). [Google Scholar]
  • Briaud J-L. 2013. The pressuremeter test: expanding its use. Ménard Lecture In: Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, 20 p. [Google Scholar]
  • CEN. 2004. Eurocode 8: Design of structures for earthquake resistance – Part 5: Foundations, retaining structures and geotechnical aspects. Brussel: European Committee for Standardization, CEN, 45 p. [Google Scholar]
  • Dupla JC. 1995. Application of the cylindrical cavity expansion to the evaluation of the liquefaction potential of sand. PhD thesis, École Nationale des Ponts et Chaussées, Paris, France, 423 p (in French). [Google Scholar]
  • Gibbs HJ, Holtz WG. 1957. Research on determining the density of sand by spoon penetration test. In: Proc. 4th Int. Conf. on Soil mechanics and Foundation Engineering, London, 1, pp. 35–39. [Google Scholar]
  • Hawkins PG, Mair RJ, Mathieson WG, Muir Wood D. 1990. Pressuremeter measurement of total horizontal stress in stiff clay. In: Proceeding of the 3rd International Symposium on Pressuremeter, Oxford, pp. 321–330. [Google Scholar]
  • Idriss IM, Boulanger RW. 2006. Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dyn Earthq Eng 26: 115–130. [CrossRef] [Google Scholar]
  • Karagiannopoulos P-G. 2020. Apport de la mesure de la pression interstitielle à l’essai pressiométrique. Chargements cycliques et monotones [Contribution of pore pressure measurement to the pressuremeter test. Cyclic and monotonic loading]. Université Paris-Est, 275 p (in French). [Google Scholar]
  • Kayabasi A, Gokceoglu C. 2018. Liquefaction potential assessment of a region using different techniques (Tepebasi, Eskişehir, Turkey). Eng Geol 246: 139–161. [CrossRef] [Google Scholar]
  • Liao S, Whitman RV. 1986. Overburden correction factors for SPT in sand. J Geotech Eng ASCE 112(3): 373–377. [CrossRef] [Google Scholar]
  • Masuda K, Nagatoh R, Tsukamoto Y, Ishihara K. 2005. Use of cyclic pressuremeter with multiple cells for evaluation of liquefaction resistance of soils. In: Gambin M, Magnan J-P, Mestat P, eds. ISP5-Pressio 2005, 50 years of pressuremeters . Presses des Ponts Ed., vol. 1, pp. 91–99. [Google Scholar]
  • Monaco P, Marchetti S, Totani G, Calabrese M. 2005. Sand liquefiability assessment by flat dilatometer test (DMT). Proc. XVI ICSMGE, Osaka , 4: 2693–2697. [Google Scholar]
  • Parkin A. 1988. Calibration of cone penetrometers. In: Procedures of the 1st International Symposium on Penetration Testing (ISOPT-1), Orlando, Florida, Pergamon, vol. 1, pp. 221–243. [Google Scholar]
  • Pass DG. 1991. Soil characterization of the deep accelerometer site at Treasure Island San Francisco, California. MSci thesis, University of New Hampshire, Durham, 252 p. [Google Scholar]
  • Reiffsteck P, Lossy D, Benoît J. 2012. Forages, sondages et essais in situ géotechniques : les outils pour la reconnaissance des sols et des roches [Drilling, sounding and geotechnical in situ tests: Tools for soil and rock investigation]. Paris : Presses des Ponts (in French). [Google Scholar]
  • Renoud-Lias B. 1978. Étude du pressiomètre en milieu pulvérulent [Study of the pressuremeter in granular medium]. PhD thesis, Grenoble University I, 147 p. (in French). [Google Scholar]
  • Robertson PK. 1990. Soil classification using the cone penetration test. Can Geotech J 27(1): 151–158. [CrossRef] [Google Scholar]
  • Robertson PK. 2009. Evaluation of flow liquefaction and liquefied strength using the cone penetration test. J Geotech Geoenviron Eng 136(6): 842–853. [Google Scholar]
  • Robertson PK, Campanella RG. 1983. Interpretation of cone penetration tests - Part I (sand). Can Geotech J 20(4): 718–733. https://doi.org/10.1139/t83-078. [CrossRef] [Google Scholar]
  • Robertson PK, Wride CE. 1998. Evaluating cyclic liquefaction potential using the cone penetration test. Can Geotech J (35): 442–459. [CrossRef] [Google Scholar]
  • Salgado R, Prezzi M. 2007. Computation of cavity expansion pressure and penetration resistance in sands. Int J Geomech 7(4): 251–265. [CrossRef] [Google Scholar]
  • Schnaid F, Houlsby GT. 1992. Measurement of the properties of sand in a calibration chamber by the cone pressuremeter test. Geotechnique 42(4): 587–601. [CrossRef] [Google Scholar]
  • Seed HB, Idriss IM. 1971. Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found Div 97(9): 1249–1273. [CrossRef] [Google Scholar]
  • Seed HB, Peacock WH. 1971. Test procedures for measuring soil liquefaction characteristics. J Soil Mech Found Div , ASCE 97(SM8): 1099–1119. [CrossRef] [Google Scholar]
  • Seed HB, Idriss IM. 1982. Ground motions and soil liquefaction during earthquakes. California: Research Institute. [Google Scholar]
  • Seed HB, de Alba PM. 1986. Use of SPT and CPT tests for evaluating the liquefaction resistance of sands. In: Proceedings of ASCE Special Conference on Use of in situ Testing in Geotechnical Engineering, Special Publication No.6, pp. 281–302. [Google Scholar]
  • Seed RB, Harder LF. 1990. SPT-based analysis of cyclic pore pressure generation and undrained residual strength. In: H. Bolton Seed Memorial Symposium Proceedings (2), pp. 351–376. [Google Scholar]
  • Seed HB, Idriss IM, Arango I. 1983. Evaluation of liquefaction potential using field performance data. J Geotech Eng 109(3): 458–482. [CrossRef] [Google Scholar]
  • Seed HB, Tokimatsu K, Harder LF, Chung RM. 1985. Influence of SPT procedures in soil liquefaction resistance evaluations. J Geotech Eng 111(12): 1425–1445. [CrossRef] [Google Scholar]
  • Tsukamoto Y, Hyodo T, Hashimoto K. 2016. Evaluation of liquefaction resistance of soils from Swedish weight sounding tests. Soils and Foundations 56(1): 104–114. https://doi.org/10.1016/j.sandf.2016.01.008. [CrossRef] [Google Scholar]
  • Youd TL, Idriss IM. 1997. Summary papers. In: Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soil, Salt Lake City, January 5-6, 1996, UT, Technical Report NCEER-97-0022, National Center for Earthquake Engineering Research, University at Buffalo. [Google Scholar]
  • Youd TL, Idriss IM, Andrus RD, et al. 2001. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. J Geotech Geoenviron Eng 127(10): 817–833. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.