Accès gratuit
Numéro |
Rev. Fr. Geotech.
Numéro 173, 2022
|
|
---|---|---|
Numéro d'article | 2 | |
Nombre de pages | 16 | |
DOI | https://doi.org/10.1051/geotech/2022015 | |
Publié en ligne | 29 septembre 2022 |
- AFTES GT16. 2018. Prise en compte des effets induits par le creusement sur les constructions avoisinantes dans la conception et la réalisation des ouvrages souterrains. Recommandation GT16 R2F1, 68 p. [Google Scholar]
- Aristaghes P, Autuori P. 2001. Calcul des tunnels au tunnelier. Rev Fr Geotech 97: 31–40. [CrossRef] [EDP Sciences] [Google Scholar]
- Basile F. 2014. Effects of tunnelling on pile foundations. Soils Found 54: 280–295. [CrossRef] [Google Scholar]
- Bel J. 2018. Modélisation physique de l’impact du creusement d’un tunnel par tunnelier à front pressurisé sur des fondations profondes. Thèse de doctorat, Université de Lyon. [Google Scholar]
- Berthoz N, Branque D, Subrin D. 2020. Déplacements induits par les tunneliers : rétro-analyse de chantiers en milieu urbain sur la base de calculs éléments finis en section courante. Rev Fr Geotech 164: 1–20. [CrossRef] [EDP Sciences] [Google Scholar]
- Chen L, Poulos HG, Loganathan N. 1999. Pile responses caused by tunnelling. J Geotech Geoenviron 125(3): 207–215. [CrossRef] [Google Scholar]
- Demagh R, Emeriault F, Hammoud F. 2013. 3D modelling of tunnel excavation using pressurized tunnel boring machine in overconsolidated soils. Stud Geotech Mech 35(2): 4–17. [Google Scholar]
- Dias D, Kastner R. 2013. Movements caused by the excavation of tunnels using face pressurized shields – Analysis of monitoring and numerical modeling results. Eng Geol 152: 17–25. [CrossRef] [Google Scholar]
- El Jirari S. 2021. Modélisation numérique du processus de creusement pressurisé des tunnels. Thèse de doctorat de l’Université de Lyon, 196 p. [Google Scholar]
- Finno RJ, Clough GW. 1985. Evaluation of soil response to epb shield tunnelling. J Geotech Eng 111: 155–173. [CrossRef] [Google Scholar]
- Franza A, Marshall AM, Haji T, Abdellatif AO, Carbonari S, Morici M. 2017. A simplified elastic analysis of tunnel-piled structure interaction. Tunnel Undergr Space Technol 61(1): 104–121. [CrossRef] [Google Scholar]
- Gilleron N, Bourgeois E, Chatellier P, Saïtta A. 2021. An anisotropic model for the numerical analysis of tunneling-induced settlements in the paris area. Geotech Geol Eng 39: 3133–3146. [CrossRef] [Google Scholar]
- Hong Y, Soomro MA, Ng CWW. 2015. Settlement and load transfer mechanism of pile group due to side-by-side twin tunnelling. Comput Geotech 64: 105–119. [CrossRef] [Google Scholar]
- Jacobsz SW, Standing JR, Mair RJ, Hagiwara T, Sugiyama T. 2004. Centrifuge modelling of tunnelling near driven piles. Soils Found 44(1): 49–56. [CrossRef] [Google Scholar]
- Jongpradist P, Kaewsri T, Sawatparnich A, et al. 2013. Development of tunneling influence zones for adjacent pile foundations by numerical analyses. Tunnel Undergr Space Technol 34: 96–109. [CrossRef] [Google Scholar]
- Kaalberg FJ, Teunissen EAH, van Tol AF, Bosch J. 2005. Dutch research on the impact of shield tunnelling on pile foundations. In: 5th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, pp. 123–131. [Google Scholar]
- Karakus M, Ozsan A, Basarir H. 2007. Finite element analysis for the twin metro tunnel constructed in Ankara Clay, Turkey. Bull Eng Geol Environ 66: 71–79. [CrossRef] [Google Scholar]
- Komiya K, Soga K, Akagi H, Hagiwara T, Bolton MD. 1999. Finite element modelling of excavation and advancement processes of a shield-tunnelling machine. Soils Found 39(3): 37–52. [CrossRef] [Google Scholar]
- Liu C, Zhang Z, Richard AR. 2014. Pile and pile group response to tunnelling using a large diameter slurry shield – Case study in Shanghai. Comput Geotech 59: 21–43. [CrossRef] [Google Scholar]
- Loganathan N, Poulos HG, Stewart DP. 2000. Centrifuge model testing of tunnelling-induced ground and pile deformations. Geotechnique 50(3): 283–294. [CrossRef] [Google Scholar]
- Meschke G, Nagel F, Stascheit J. 2011. Computational simulation of mechanized tunneling as part of an integrated decision support platform. Int J Geomech 11: 519–528. [CrossRef] [Google Scholar]
- Meschke G, Ninic J, Stasheit J, Alsahly A. 2013. Parallelized computational modeling of pile-soil interactions in mechanized tunneling. Eng Struct 47: 35–44. [CrossRef] [Google Scholar]
- Michalski A, Branque D, Berthoz N, Mohamad W, Bourgeois E, Le Kouby A, Szymkiewicz F. 2022a. Full-scale experiment of the TBM / soil / pile interaction in Parisian subsoil. In: Actes du World Tunnel Congress, Copenhague, April 2022, 6 p. [Google Scholar]
- Michalski A, Branque D, Berthoz N, et al. 2022b. TBM soft ground interaction during EPB tunnelling in Parisian soil. Geotechnique (under review). [Google Scholar]
- Mohamad W, Bourgeois E, Le Kouby A, et al. 2022. Full scale study of pile response to EPBM tunnelling on a Grand Paris Express site. Tunnel Undergr Space Technol 124: 104492. [CrossRef] [Google Scholar]
- Mroueh H, Shahrour I. 2008. A simplified 3D model for tunnel construction using tunnel boring machines. Tunnel Undergr Space Technol 23: 38–45. [CrossRef] [Google Scholar]
- Nematollahi M, Dias D. 2019. Three-dimensional numerical simulation of pile-twin tunnels interaction – Case of the Shirazsubwayling. Tunnel Undergr Space Technol 86: 75–88. [CrossRef] [Google Scholar]
- Pang C, Yong K, Chow Y, Wang J. 2006. The response of pile foundations subjected to shield tunnelling. In: Geotechnical Aspects of Underground Construction in Soft Ground – Proceedings of the 5th International Conference of TC28 of the ISSMGE, pp. 737–743. [Google Scholar]
- Pardoen B, Levasseur S, Collin F. 2015. Using local second gradient model and shear strain localisation to model the excavation damaged zone in unsaturated claystone. Rock Mech Rock Eng 48: 691–714. [CrossRef] [Google Scholar]
- Rowe RK, Lo KY, Kack GJ. 1983. A method of estimating surface settlement above shallow tunnels constructed in soft ground. Can Geotech J 20: 11–22. [CrossRef] [Google Scholar]
- Schanz T, Vermeer PA, Bonnier PG. 1999. The hardening soil model: Formulation and verification. In: Beyond 2000 in Computational Geotechnics – 10 Years of PLAXIS, Proceedings of the 1st Symposium on Plaxis, CRC Press, 328 p. [Google Scholar]
- Schweiger HF. 2002, Results from numerical benchmark exercises in geotechnics. In: Proceedings of the 5th European Conference Numerical Methods in Geotechnical Engineering, Presses Ponts et Chaussées, Paris, pp. 305–314. [Google Scholar]
- Setec-Terrasol. 2022. Foxta v4 – Dimensionnement des fondations superficielles et profondes. Foxta v4 – Manuel en ligne sur www.terrasol.fr. [Google Scholar]
- Soomro MA, Hong W, Ng CWW, Lu H, Peng S. 2015. Load transfer mechanism in pile group dut to sing tunnel advancement in stiff clay. Tunnel Undergr Space Technol 45: 63–72. [CrossRef] [Google Scholar]
- Standing JR, Selemetas D. 2013. Greenfield ground response to EPBM tunnelling in London clay. Geotechnique 63(12): 989–1007. [CrossRef] [Google Scholar]
- Swoboda G. 1979. Finite element analysis of the New Austrian Tunnelling Method (NATM). In: Proceedings of the 3rd International conference on Numerical Methods in Geomechanics, vol. 2, Aachen, pp. 581–586. [Google Scholar]
- Swoboda G, Abu-Krisha A. 1999. Three-dimensional numerical modelling for TBM tunnelling in consolidated clay. Tunnel Undergr Space Technol 14: 327–333. [CrossRef] [Google Scholar]
- Vermeer PA, Brinkgreve R. 1993. Plaxis version 5 manual. Rotterdam: A.A. Balkema. [Google Scholar]
- Zhang Z, Huang M, Xu C, Jiang Y, Wang W. 2018. Simplified solution for tunnel-soil-pile interaction in Pasternak’s foundation. Tunnel Undergr Space Technol 78: 146–158. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.