Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 173, 2022
Numéro d'article 3
Nombre de pages 22
DOI https://doi.org/10.1051/geotech/2022019
Publié en ligne 4 janvier 2023
  • Abbas MF, Elkady TY, Al-Shamrani MA. 2015. Evaluation of strain and stress states of a compacted highly expansive soil using a thin-walled oedometer. Eng Geol 193: 132–145. [CrossRef] [Google Scholar]
  • Abdelhamid MS, Krizek RJ. 1976. At rest lateral earth pressure of a consolidating clay. J Geotech Eng Div 102(7): 721–728. [CrossRef] [Google Scholar]
  • Al-Maamori HMS, El Naggar MH, Micic S, Lo KY. 2016. Influence of lubricant fluids on swelling behaviour of Queenston shale in southern Ontario. Can Geotech J 53(7): 1059–1080. [CrossRef] [Google Scholar]
  • Amorosi A, Rampello S. 2007. An experimental investigation into the mechanical behaviour of a structured stiff clay. Géotechnique 57(2): 153–166. [CrossRef] [Google Scholar]
  • Afnor (Association française de normalisation). 1995. Sols : reconnaissance et essais − Essai de gonflement à l’œdomètre - Détermination des déformations par chargement de plusieurs éprouvettes. Norme XP P94-091, décembre 1995, 13 p. [Google Scholar]
  • ASTM ( American Society for Testing and Materials). 2014. Standard D4546-14e1. Standard Test Methods for One-Dimensional Swell or Collapse of Cohesive Soils. West Conshohocken, PA: ASTM International. Available from www.astm.org. [Google Scholar]
  • Aversa S, Evangelista A, Leroueil S, Picarelli L. 1993. Some aspects of the mechanical behaviour of ‘structured’ soils and soft rocks. In: Proceedings of the International Symposium on Geotechnical Engineering of Hard Soils and Soft Rocks, Athens, 1, pp. 359–366. [Google Scholar]
  • Avsar E, Ulusay R, Sonmez H. 2009. Assessments of swelling anisotropy of Ankara clay. Eng Geol 105(1–2): 24–31. [CrossRef] [Google Scholar]
  • Azizi F, Josseaume H. 1988. Loi de comportement des sols raides. Détermination de la courbe d’état limite de l’argile verte de Romainville. Rapport des laboratoires LCPC, GT-33, 188 p. [Google Scholar]
  • Bergère A, Ropers F. 2018. Les argiles plastiques de l’Yprésien et leur comportement capricieux. In: Compte rendu des Journées nationales de géotechnique et de géologie de l’ingénieur, Marne-la-Vallée. [Google Scholar]
  • Bilir ME, Muftuoglu YV, Sari D. 2004. A computer-controlled triaxial swelling test apparatus. Turk J Eng Environ Sci 28: 269–280. [Google Scholar]
  • Bishop AW. 1958. Test requirements for measuring the coefficient of earth pressure at rest. In: Proceedings of the Conference on Earth Pressure Problems, Brussels, Belgium, 1, pp. 2–14. [Google Scholar]
  • Bishop AW, Webb DL, Lewin PI. 1965. Undisturbed samples of London clay from the Ashford Common shaft: strength-effective stress relationships. Géotechnique 15(1): 1–31. [CrossRef] [Google Scholar]
  • Bjerrum L. 1967. Progressive failure in slopes of overconsolidated plastic clay and clay shales. J Soil Mech Found Div ASCE 93: 1–49. [CrossRef] [Google Scholar]
  • Brooker EW, Ireland HO. 1965. Earth pressures at rest related to stress history. Can Geotech J 2(1): 1–15. [CrossRef] [Google Scholar]
  • Burland JB. 1990. On the compressibility and shear strength of natural clays. Géotechnique 40(3): 329–378. [CrossRef] [Google Scholar]
  • Calabresi G, Scarpelli G. 1985. Effects of swelling caused by unloading in overconsolidated clays. In: Proceedings of the 11th ICSMFE, San Francisco, 1, pp. 411–414. [Google Scholar]
  • CFMS (Comité français de mécanique des sols). 2022. Recommandations sur la prise en compte du gonflement des terrains argileux dans le dimensionnement des ouvrages d’infrastructure. Version provisoire V38, avril 2022. [Google Scholar]
  • Clayton CRI, Serratrice JF. 1993. The mechanical properties and behaviour of hard soils and soft rocks. In: Proceedings of the International Symposium on Geotechnical Engineering of Hard Soils and Soft Rocks, Athens, 3, pp. 1839–1877. [Google Scholar]
  • Cotecchia F, Chandler RJ. 1997. The influence of structure on the pre-failure behaviour of a natural clay. Géotechnique 47(3): 523–544. [CrossRef] [Google Scholar]
  • Cotecchia F, Chandler RJ. 2000. A general framework for the mechanical behaviour of clays. Géotechnique 50(4): 431–447. [CrossRef] [Google Scholar]
  • Cotecchia F, Guglielmi S, Gens A. 2020. Investigation of the evolution of clay microstructure under different loading paths and impact on constitutive modeling. Glob J Eng Sci 5(1): 2020. [Google Scholar]
  • Cui YJ, Nguyen XP, Tang AM, Li XL. 2013. An insight into the unloading/reloading loops on the compression curve of natural stiff clays. Appl Clay Sci 83–84: 343–348. [CrossRef] [Google Scholar]
  • Dao LQ. 2015. Étude du comportement anisotrope de l’argile de Boom. Thèse. Université Paris-Est, 332 p. [Google Scholar]
  • Delage P. 2020. Mécanismes de gonflement dans les sols fins ; application aux sols gonflants de la région parisienne. Rev Fr Géotech 165: 3. [CrossRef] [EDP Sciences] [Google Scholar]
  • Deng YF, Cui YJ, Tang AM, Li XL, Sillen X. 2012. An experimental study on the secondary deformation of Boom clay. Appl Clay Sci 59–60: 19–25. [CrossRef] [Google Scholar]
  • Di Remigio G, Rocchi I, Zania V. 2019. Swelling properties of a Danish Paleogene clay: a multiscale study on structure. In: E3S Web of Conferences 92 IS-Glasgow 2019. [Google Scholar]
  • Elsaidy H, Yan WM, Pender MJ. 2017. Measuring the vertical and lateral swelling pressure of expansive residual soils using a K0 triaxial cell. In: Proceedings of the 20th NZGS Geotechnical Symposium. [Google Scholar]
  • Erol AO, Ergun U. 1994. Lateral swell pressure in expansive soils. In: Proceedings of the 13th ICSMFE, New Delhi, pp. 1511–1514. [Google Scholar]
  • Gasparre A, Nishimura S, Coop MR, Jardine RJ. 2007. The influence of structure on the behaviour of London clay. Géotechnique 57(1): 19–31. [CrossRef] [Google Scholar]
  • Gasparre A, Coop MR. 2008. Quantification of the effects of structure on the compression of a stiff clay. Can Geotech J 45(9): 1324–1334. [CrossRef] [Google Scholar]
  • Gaudin B, Serratrice JF. 1998. Étude en laboratoire du comportement mécanique d’une molasse. In: Compte rendu du 2e Symposium international sur les sols indurés et les roches tendres, Naples, pp. 173–181. [Google Scholar]
  • Gens A. 2013. On the hydromechanical behaviour of argillaceous hard soils-weak rocks. In: Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering − Geotechnics of Hard Soils − Weak Rocks, Part 4, pp. 71–118. [Google Scholar]
  • Grob H. 1972. Schwelldruck im Belchentunnel. In: Proceeding of the International Symposium für Untertagebau, Luzern, pp. 99–119. [Google Scholar]
  • Hawlader BC, Lee YN, Lo KY. 2003. Three-dimensional stress effects on time-dependent swelling behaviour of shaly rocks. Can Geotech J 40: 501–511. [CrossRef] [Google Scholar]
  • Hoien AH, Nilsen B, Vistnes G, Olsson E. 2020. Experimental triaxial testing of swelling gouge materials. Bull Eng Geol Environ 79: 355–370. [CrossRef] [Google Scholar]
  • Horseman ST, Winter MG, Entwistle DC. 1987. Geotechnical characterisation of Boom clay in relation to disposal of radioactive waste. Luxembourg: Office for Official Publication in European Communities. [Google Scholar]
  • Huder J, Amberg G. 1970. Quellung in Mergel, Opalinuston und Anhydrit. Schweiz Bauztg 43: 975–980. [Google Scholar]
  • ISRM (International Society for Rock Mechanics). 1983. Characterisation of Swelling Rock. Commission on Swelling Rock. Oxford, UK: Pergamon Press. [Google Scholar]
  • ISRM (International Society for Rock Mechanics). 1989. Suggested methods for laboratory testing of argillaceous swelling rock. Int J Rock Mech Min Sci Geomech Abstr 26(5): 415–426. [CrossRef] [Google Scholar]
  • ISRM (International Society for Rock Mechanics). 1999. Suggested methods for laboratory testing of swelling rocks. Int J Rock Mech Min Sci Geomech Abstr 36(5): 291–306. [CrossRef] [Google Scholar]
  • Josseaume H, Azizi F. 1991. Détermination expérimentale de la courbe d’état limite d’une argile raide très plastique, l’argile verte du Sannoisien. Rev Fr Géotech 54: 13–25. [CrossRef] [EDP Sciences] [Google Scholar]
  • Josseaume H. 1998. Propriétés mécaniques de l’argile des Flandres à Dunkerque et à Calais. Rev Fr Géotech 84: 3–26. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kinslev EM, Hededal O, Rocchi I, Zania V. 2019. Stress dependency and unloading-induced swelling behaviour of a high plasticity overconsolidated clay of Paleogene origin. In: Proceedings of the 7th International Symposium on Deformation Characteristics of Geomaterials, Glasgow, United Kingdom. [Google Scholar]
  • Kinslev EM, Hededal O, Rocchi I, Zania V. 2022. Mode-based characterisation of swell deformations in a high-plasticity Paleogene clay. Can Geotech J 59(6). https://doi.org/10.1139/cgj-2021-0243. [Google Scholar]
  • Komornik A, Zeitlen JG, 1965. An apparatus for measuring lateral soil swelling pressure in the laboratory. In: Proceedings of the 6th ICSMFE, Montreal, pp. 278–281. [Google Scholar]
  • Krogsbøll A, Hededal O, Foged NN. 2012. Deformation properties of highly plastic fissured Palaeogene clay − Lack of stress memory? In: Proceedings of the 16th Nordic geotechnical meeting NGM 2012, 1, pp. 133–140. [Google Scholar]
  • Leroueil S, Vaughan PR. 1990. The general and congruent effects of structure in natural soils and weak rocks. Géotechnique 40(3): 467–488. [CrossRef] [Google Scholar]
  • Mohajerani M, Delage P, Monfared M, Tang AM, Sulem J, Gatmiri B. 2011. Oedometric compression and swelling behaviour of the Callovo-Oxfordia, argillite. Int J Rock Mech Min Sci 48(4): 606–615. [CrossRef] [Google Scholar]
  • Monroy R, Zdravkovic L, Ridley AM. 2015. Mechanical behaviour of unsaturated expansive clay under K0 conditions. Eng Geol 197: 112–131. [CrossRef] [Google Scholar]
  • Picarelli L. 1991. Discussion article de Leroueil et Vaughan (1990): The general and congruent effects of structure in natural soils and weak rocks. Géotechnique 41(2): 281–284. [Google Scholar]
  • Pimentel E. 2015. Existing methods for swelling tests − a critical review. Energy Procedia 76: 96–105. [CrossRef] [Google Scholar]
  • Reiffsteck P, Szymkiewicz F, Fanelli S, Makki L. 2019. Comparison of the measurement of swelling pressure through different tests. In: Proceedings of the XVII ECSMGE Geotechnical Engineering foundation of the future, Reykjavik. [Google Scholar]
  • Rocchi I, Di Remigio G, Grønbech GL, Zania V. 2018. Compressibility and swelling of an overconsolidated highly plastic Paleogene clay. In: Proceedings of the Micro to MACRO Mathematical Modelling in Soil Mechanics, Reggio di Calabria, Italy. [Google Scholar]
  • Selen L, Panthi KK. 2021. A review of the testing approaches in swelling rock conditions at three different institutions. IOP Conf Ser Earth Environ Sci 833: 012034. [CrossRef] [Google Scholar]
  • Serratrice JF. 2002. Outils et procédures de caractérisation des sols indurés et des roches tendres : l’expérience du LRPC d’Aix-en-Provence. In: Compte rendu du Symposium international PARAM 2002, Paris, pp. 313–326. [Google Scholar]
  • Serratrice JF. 2007. Retrait-gonflement des sols argileux et des marnes. Rev Fr Géotech 120–121: 107–120. [CrossRef] [EDP Sciences] [Google Scholar]
  • Serratrice JF. 2017. Divers aspects du comportement mécanique des marnes au laboratoire. Rev Fr Géotech 151: 3. [CrossRef] [EDP Sciences] [Google Scholar]
  • Serratrice JF. 2022. Caractéristiques des chemins des contraintes enregistrés à l’aide d’un œdomètre K0 à haute pression. Rev Fr Géotech (soumis). [Google Scholar]
  • Serratrice JF, Flavigny E. 1993. Mesure en laboratoire du coefficient K0 d’une marne. In: Compte rendu du Symposium international sur les sols indurés et les roches tendres, Athènes, septembre 1993, vol. 1, pp. 787–793. [Google Scholar]
  • Serratrice JF, Soyez B. 1996. Les essais de gonflement. Bull Lab Ponts et Chaussées 204: 65–85. [Google Scholar]
  • Serratrice JF, Calissano H, Batilliot L. 2015. Divers aspects du gonflement des marnes en laboratoire. In: Compte rendu du Symposium International SEC 2015, Retrait et gonflement des sols − Climat et constructions, Paris, pp. 187–196. [Google Scholar]
  • Sridharan A, Rao AS, Sivapullaiah PV. 1986. Swelling pressure of clays. Geotech Test J 9(1): 24–33. [CrossRef] [Google Scholar]
  • Steiner W. 1993. Swelling rock in tunnels: rock characterization, effect of horizontal stresses and construction procedures. Int J Rock Mech Min Sci Geomech Abstr 30(4): 361–380. [CrossRef] [Google Scholar]
  • Takahashi A, Fung DWK, Jardine RJ. 2005. Swelling effects on mechanical behaviour of natural London clay. In: Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, 2, pp. 443–446. [Google Scholar]
  • Vitone C, Cotecchia F. 2011. The influence of intense fissuring on the mechanical behaviour of clays. Géotechnique 61(12): 1003–1018. [CrossRef] [Google Scholar]
  • Windal T, Shahrour I, Magnan JP, Serratrice JF. 2002. Étude du gonflement des sols pour des projets de tunnels. Rev Fr Géotech 100: 91–99. [CrossRef] [EDP Sciences] [Google Scholar]
  • Yesil MM, Pasamehmetoglu AG, Bozdag T. 1993. A triaxial swelling test apparatus. Int J Rock Mech Min Sci Geomech Abstr 30(4): 443–450. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.