Free Access
Issue
Rev. Fr. Geotech.
Number 173, 2022
Article Number 3
Number of page(s) 22
DOI https://doi.org/10.1051/geotech/2022019
Published online 04 January 2023
  • Abbas MF, Elkady TY, Al-Shamrani MA. 2015. Evaluation of strain and stress states of a compacted highly expansive soil using a thin-walled oedometer. Eng Geol 193: 132–145. [CrossRef] [Google Scholar]
  • Abdelhamid MS, Krizek RJ. 1976. At rest lateral earth pressure of a consolidating clay. J Geotech Eng Div 102(7): 721–728. [CrossRef] [Google Scholar]
  • Al-Maamori HMS, El Naggar MH, Micic S, Lo KY. 2016. Influence of lubricant fluids on swelling behaviour of Queenston shale in southern Ontario. Can Geotech J 53(7): 1059–1080. [CrossRef] [Google Scholar]
  • Amorosi A, Rampello S. 2007. An experimental investigation into the mechanical behaviour of a structured stiff clay. Géotechnique 57(2): 153–166. [CrossRef] [Google Scholar]
  • Afnor (Association française de normalisation). 1995. Sols : reconnaissance et essais − Essai de gonflement à l’œdomètre - Détermination des déformations par chargement de plusieurs éprouvettes. Norme XP P94-091, décembre 1995, 13 p. [Google Scholar]
  • ASTM ( American Society for Testing and Materials). 2014. Standard D4546-14e1. Standard Test Methods for One-Dimensional Swell or Collapse of Cohesive Soils. West Conshohocken, PA: ASTM International. Available from www.astm.org. [Google Scholar]
  • Aversa S, Evangelista A, Leroueil S, Picarelli L. 1993. Some aspects of the mechanical behaviour of ‘structured’ soils and soft rocks. In: Proceedings of the International Symposium on Geotechnical Engineering of Hard Soils and Soft Rocks, Athens, 1, pp. 359–366. [Google Scholar]
  • Avsar E, Ulusay R, Sonmez H. 2009. Assessments of swelling anisotropy of Ankara clay. Eng Geol 105(1–2): 24–31. [CrossRef] [Google Scholar]
  • Azizi F, Josseaume H. 1988. Loi de comportement des sols raides. Détermination de la courbe d’état limite de l’argile verte de Romainville. Rapport des laboratoires LCPC, GT-33, 188 p. [Google Scholar]
  • Bergère A, Ropers F. 2018. Les argiles plastiques de l’Yprésien et leur comportement capricieux. In: Compte rendu des Journées nationales de géotechnique et de géologie de l’ingénieur, Marne-la-Vallée. [Google Scholar]
  • Bilir ME, Muftuoglu YV, Sari D. 2004. A computer-controlled triaxial swelling test apparatus. Turk J Eng Environ Sci 28: 269–280. [Google Scholar]
  • Bishop AW. 1958. Test requirements for measuring the coefficient of earth pressure at rest. In: Proceedings of the Conference on Earth Pressure Problems, Brussels, Belgium, 1, pp. 2–14. [Google Scholar]
  • Bishop AW, Webb DL, Lewin PI. 1965. Undisturbed samples of London clay from the Ashford Common shaft: strength-effective stress relationships. Géotechnique 15(1): 1–31. [CrossRef] [Google Scholar]
  • Bjerrum L. 1967. Progressive failure in slopes of overconsolidated plastic clay and clay shales. J Soil Mech Found Div ASCE 93: 1–49. [CrossRef] [Google Scholar]
  • Brooker EW, Ireland HO. 1965. Earth pressures at rest related to stress history. Can Geotech J 2(1): 1–15. [CrossRef] [Google Scholar]
  • Burland JB. 1990. On the compressibility and shear strength of natural clays. Géotechnique 40(3): 329–378. [CrossRef] [Google Scholar]
  • Calabresi G, Scarpelli G. 1985. Effects of swelling caused by unloading in overconsolidated clays. In: Proceedings of the 11th ICSMFE, San Francisco, 1, pp. 411–414. [Google Scholar]
  • CFMS (Comité français de mécanique des sols). 2022. Recommandations sur la prise en compte du gonflement des terrains argileux dans le dimensionnement des ouvrages d’infrastructure. Version provisoire V38, avril 2022. [Google Scholar]
  • Clayton CRI, Serratrice JF. 1993. The mechanical properties and behaviour of hard soils and soft rocks. In: Proceedings of the International Symposium on Geotechnical Engineering of Hard Soils and Soft Rocks, Athens, 3, pp. 1839–1877. [Google Scholar]
  • Cotecchia F, Chandler RJ. 1997. The influence of structure on the pre-failure behaviour of a natural clay. Géotechnique 47(3): 523–544. [CrossRef] [Google Scholar]
  • Cotecchia F, Chandler RJ. 2000. A general framework for the mechanical behaviour of clays. Géotechnique 50(4): 431–447. [CrossRef] [Google Scholar]
  • Cotecchia F, Guglielmi S, Gens A. 2020. Investigation of the evolution of clay microstructure under different loading paths and impact on constitutive modeling. Glob J Eng Sci 5(1): 2020. [Google Scholar]
  • Cui YJ, Nguyen XP, Tang AM, Li XL. 2013. An insight into the unloading/reloading loops on the compression curve of natural stiff clays. Appl Clay Sci 83–84: 343–348. [CrossRef] [Google Scholar]
  • Dao LQ. 2015. Étude du comportement anisotrope de l’argile de Boom. Thèse. Université Paris-Est, 332 p. [Google Scholar]
  • Delage P. 2020. Mécanismes de gonflement dans les sols fins ; application aux sols gonflants de la région parisienne. Rev Fr Géotech 165: 3. [CrossRef] [EDP Sciences] [Google Scholar]
  • Deng YF, Cui YJ, Tang AM, Li XL, Sillen X. 2012. An experimental study on the secondary deformation of Boom clay. Appl Clay Sci 59–60: 19–25. [CrossRef] [Google Scholar]
  • Di Remigio G, Rocchi I, Zania V. 2019. Swelling properties of a Danish Paleogene clay: a multiscale study on structure. In: E3S Web of Conferences 92 IS-Glasgow 2019. [Google Scholar]
  • Elsaidy H, Yan WM, Pender MJ. 2017. Measuring the vertical and lateral swelling pressure of expansive residual soils using a K0 triaxial cell. In: Proceedings of the 20th NZGS Geotechnical Symposium. [Google Scholar]
  • Erol AO, Ergun U. 1994. Lateral swell pressure in expansive soils. In: Proceedings of the 13th ICSMFE, New Delhi, pp. 1511–1514. [Google Scholar]
  • Gasparre A, Nishimura S, Coop MR, Jardine RJ. 2007. The influence of structure on the behaviour of London clay. Géotechnique 57(1): 19–31. [CrossRef] [Google Scholar]
  • Gasparre A, Coop MR. 2008. Quantification of the effects of structure on the compression of a stiff clay. Can Geotech J 45(9): 1324–1334. [CrossRef] [Google Scholar]
  • Gaudin B, Serratrice JF. 1998. Étude en laboratoire du comportement mécanique d’une molasse. In: Compte rendu du 2e Symposium international sur les sols indurés et les roches tendres, Naples, pp. 173–181. [Google Scholar]
  • Gens A. 2013. On the hydromechanical behaviour of argillaceous hard soils-weak rocks. In: Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering − Geotechnics of Hard Soils − Weak Rocks, Part 4, pp. 71–118. [Google Scholar]
  • Grob H. 1972. Schwelldruck im Belchentunnel. In: Proceeding of the International Symposium für Untertagebau, Luzern, pp. 99–119. [Google Scholar]
  • Hawlader BC, Lee YN, Lo KY. 2003. Three-dimensional stress effects on time-dependent swelling behaviour of shaly rocks. Can Geotech J 40: 501–511. [CrossRef] [Google Scholar]
  • Hoien AH, Nilsen B, Vistnes G, Olsson E. 2020. Experimental triaxial testing of swelling gouge materials. Bull Eng Geol Environ 79: 355–370. [CrossRef] [Google Scholar]
  • Horseman ST, Winter MG, Entwistle DC. 1987. Geotechnical characterisation of Boom clay in relation to disposal of radioactive waste. Luxembourg: Office for Official Publication in European Communities. [Google Scholar]
  • Huder J, Amberg G. 1970. Quellung in Mergel, Opalinuston und Anhydrit. Schweiz Bauztg 43: 975–980. [Google Scholar]
  • ISRM (International Society for Rock Mechanics). 1983. Characterisation of Swelling Rock. Commission on Swelling Rock. Oxford, UK: Pergamon Press. [Google Scholar]
  • ISRM (International Society for Rock Mechanics). 1989. Suggested methods for laboratory testing of argillaceous swelling rock. Int J Rock Mech Min Sci Geomech Abstr 26(5): 415–426. [CrossRef] [Google Scholar]
  • ISRM (International Society for Rock Mechanics). 1999. Suggested methods for laboratory testing of swelling rocks. Int J Rock Mech Min Sci Geomech Abstr 36(5): 291–306. [CrossRef] [Google Scholar]
  • Josseaume H, Azizi F. 1991. Détermination expérimentale de la courbe d’état limite d’une argile raide très plastique, l’argile verte du Sannoisien. Rev Fr Géotech 54: 13–25. [CrossRef] [EDP Sciences] [Google Scholar]
  • Josseaume H. 1998. Propriétés mécaniques de l’argile des Flandres à Dunkerque et à Calais. Rev Fr Géotech 84: 3–26. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kinslev EM, Hededal O, Rocchi I, Zania V. 2019. Stress dependency and unloading-induced swelling behaviour of a high plasticity overconsolidated clay of Paleogene origin. In: Proceedings of the 7th International Symposium on Deformation Characteristics of Geomaterials, Glasgow, United Kingdom. [Google Scholar]
  • Kinslev EM, Hededal O, Rocchi I, Zania V. 2022. Mode-based characterisation of swell deformations in a high-plasticity Paleogene clay. Can Geotech J 59(6). https://doi.org/10.1139/cgj-2021-0243. [Google Scholar]
  • Komornik A, Zeitlen JG, 1965. An apparatus for measuring lateral soil swelling pressure in the laboratory. In: Proceedings of the 6th ICSMFE, Montreal, pp. 278–281. [Google Scholar]
  • Krogsbøll A, Hededal O, Foged NN. 2012. Deformation properties of highly plastic fissured Palaeogene clay − Lack of stress memory? In: Proceedings of the 16th Nordic geotechnical meeting NGM 2012, 1, pp. 133–140. [Google Scholar]
  • Leroueil S, Vaughan PR. 1990. The general and congruent effects of structure in natural soils and weak rocks. Géotechnique 40(3): 467–488. [CrossRef] [Google Scholar]
  • Mohajerani M, Delage P, Monfared M, Tang AM, Sulem J, Gatmiri B. 2011. Oedometric compression and swelling behaviour of the Callovo-Oxfordia, argillite. Int J Rock Mech Min Sci 48(4): 606–615. [CrossRef] [Google Scholar]
  • Monroy R, Zdravkovic L, Ridley AM. 2015. Mechanical behaviour of unsaturated expansive clay under K0 conditions. Eng Geol 197: 112–131. [CrossRef] [Google Scholar]
  • Picarelli L. 1991. Discussion article de Leroueil et Vaughan (1990): The general and congruent effects of structure in natural soils and weak rocks. Géotechnique 41(2): 281–284. [Google Scholar]
  • Pimentel E. 2015. Existing methods for swelling tests − a critical review. Energy Procedia 76: 96–105. [CrossRef] [Google Scholar]
  • Reiffsteck P, Szymkiewicz F, Fanelli S, Makki L. 2019. Comparison of the measurement of swelling pressure through different tests. In: Proceedings of the XVII ECSMGE Geotechnical Engineering foundation of the future, Reykjavik. [Google Scholar]
  • Rocchi I, Di Remigio G, Grønbech GL, Zania V. 2018. Compressibility and swelling of an overconsolidated highly plastic Paleogene clay. In: Proceedings of the Micro to MACRO Mathematical Modelling in Soil Mechanics, Reggio di Calabria, Italy. [Google Scholar]
  • Selen L, Panthi KK. 2021. A review of the testing approaches in swelling rock conditions at three different institutions. IOP Conf Ser Earth Environ Sci 833: 012034. [CrossRef] [Google Scholar]
  • Serratrice JF. 2002. Outils et procédures de caractérisation des sols indurés et des roches tendres : l’expérience du LRPC d’Aix-en-Provence. In: Compte rendu du Symposium international PARAM 2002, Paris, pp. 313–326. [Google Scholar]
  • Serratrice JF. 2007. Retrait-gonflement des sols argileux et des marnes. Rev Fr Géotech 120–121: 107–120. [CrossRef] [EDP Sciences] [Google Scholar]
  • Serratrice JF. 2017. Divers aspects du comportement mécanique des marnes au laboratoire. Rev Fr Géotech 151: 3. [CrossRef] [EDP Sciences] [Google Scholar]
  • Serratrice JF. 2022. Caractéristiques des chemins des contraintes enregistrés à l’aide d’un œdomètre K0 à haute pression. Rev Fr Géotech (soumis). [Google Scholar]
  • Serratrice JF, Flavigny E. 1993. Mesure en laboratoire du coefficient K0 d’une marne. In: Compte rendu du Symposium international sur les sols indurés et les roches tendres, Athènes, septembre 1993, vol. 1, pp. 787–793. [Google Scholar]
  • Serratrice JF, Soyez B. 1996. Les essais de gonflement. Bull Lab Ponts et Chaussées 204: 65–85. [Google Scholar]
  • Serratrice JF, Calissano H, Batilliot L. 2015. Divers aspects du gonflement des marnes en laboratoire. In: Compte rendu du Symposium International SEC 2015, Retrait et gonflement des sols − Climat et constructions, Paris, pp. 187–196. [Google Scholar]
  • Sridharan A, Rao AS, Sivapullaiah PV. 1986. Swelling pressure of clays. Geotech Test J 9(1): 24–33. [CrossRef] [Google Scholar]
  • Steiner W. 1993. Swelling rock in tunnels: rock characterization, effect of horizontal stresses and construction procedures. Int J Rock Mech Min Sci Geomech Abstr 30(4): 361–380. [CrossRef] [Google Scholar]
  • Takahashi A, Fung DWK, Jardine RJ. 2005. Swelling effects on mechanical behaviour of natural London clay. In: Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, 2, pp. 443–446. [Google Scholar]
  • Vitone C, Cotecchia F. 2011. The influence of intense fissuring on the mechanical behaviour of clays. Géotechnique 61(12): 1003–1018. [CrossRef] [Google Scholar]
  • Windal T, Shahrour I, Magnan JP, Serratrice JF. 2002. Étude du gonflement des sols pour des projets de tunnels. Rev Fr Géotech 100: 91–99. [CrossRef] [EDP Sciences] [Google Scholar]
  • Yesil MM, Pasamehmetoglu AG, Bozdag T. 1993. A triaxial swelling test apparatus. Int J Rock Mech Min Sci Geomech Abstr 30(4): 443–450. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.