Free Access
Issue |
Rev. Fr. Geotech.
Number 173, 2022
|
|
---|---|---|
Article Number | 1 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/geotech/2022014 | |
Published online | 23 September 2022 |
- Baldi G, Bruzzi R, Superbo M, Battaglio E, Jamiolkowski M. 1986. Interpretation of CPTs and CPTUs; 2nd part: drained penetration of sands. In: Proceedings of the 4th International Geotechnical Seminar, Singapour, pp. 143–156. [Google Scholar]
- Bellotti R, Grippa V, Robertson PK, Jamiolkowski M, Robertson PK. 1987. Self-boring pressuremeter in pluvially deposited sand. ENEL-CRIS. Milan: USACE. [Google Scholar]
- Bellotti R, Ghionna V, Jamiolkowski M, Robertson PK, Peterson RW. 1989. Interpretation of moduli from self-boring pressuremeter in sand. Geotechnique 39(2): 269–292. [CrossRef] [Google Scholar]
- Bouguerra H. 1997. Prévision du potentiel de liquéfaction des sites sableux à l’aide d’appareillages in situ [Prediction of the liquefaction potential of sandy sites using in-situ test]. PhD INPG Grenoble, 370 p (in French). [Google Scholar]
- Briaud J-L. 2013. The pressuremeter test: expanding its use. Ménard Lecture In: Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, 20 p. [Google Scholar]
- CEN. 2004. Eurocode 8: Design of structures for earthquake resistance – Part 5: Foundations, retaining structures and geotechnical aspects. Brussel: European Committee for Standardization, CEN, 45 p. [Google Scholar]
- Dupla JC. 1995. Application of the cylindrical cavity expansion to the evaluation of the liquefaction potential of sand. PhD thesis, École Nationale des Ponts et Chaussées, Paris, France, 423 p (in French). [Google Scholar]
- Gibbs HJ, Holtz WG. 1957. Research on determining the density of sand by spoon penetration test. In: Proc. 4th Int. Conf. on Soil mechanics and Foundation Engineering, London, 1, pp. 35–39. [Google Scholar]
- Hawkins PG, Mair RJ, Mathieson WG, Muir Wood D. 1990. Pressuremeter measurement of total horizontal stress in stiff clay. In: Proceeding of the 3rd International Symposium on Pressuremeter, Oxford, pp. 321–330. [Google Scholar]
- Idriss IM, Boulanger RW. 2006. Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dyn Earthq Eng 26: 115–130. [CrossRef] [Google Scholar]
- Karagiannopoulos P-G. 2020. Apport de la mesure de la pression interstitielle à l’essai pressiométrique. Chargements cycliques et monotones [Contribution of pore pressure measurement to the pressuremeter test. Cyclic and monotonic loading]. Université Paris-Est, 275 p (in French). [Google Scholar]
- Kayabasi A, Gokceoglu C. 2018. Liquefaction potential assessment of a region using different techniques (Tepebasi, Eskişehir, Turkey). Eng Geol 246: 139–161. [CrossRef] [Google Scholar]
- Liao S, Whitman RV. 1986. Overburden correction factors for SPT in sand. J Geotech Eng ASCE 112(3): 373–377. [CrossRef] [Google Scholar]
- Masuda K, Nagatoh R, Tsukamoto Y, Ishihara K. 2005. Use of cyclic pressuremeter with multiple cells for evaluation of liquefaction resistance of soils. In: Gambin M, Magnan J-P, Mestat P, eds. ISP5-Pressio 2005, 50 years of pressuremeters . Presses des Ponts Ed., vol. 1, pp. 91–99. [Google Scholar]
- Monaco P, Marchetti S, Totani G, Calabrese M. 2005. Sand liquefiability assessment by flat dilatometer test (DMT). Proc. XVI ICSMGE, Osaka , 4: 2693–2697. [Google Scholar]
- Parkin A. 1988. Calibration of cone penetrometers. In: Procedures of the 1st International Symposium on Penetration Testing (ISOPT-1), Orlando, Florida, Pergamon, vol. 1, pp. 221–243. [Google Scholar]
- Pass DG. 1991. Soil characterization of the deep accelerometer site at Treasure Island San Francisco, California. MSci thesis, University of New Hampshire, Durham, 252 p. [Google Scholar]
- Reiffsteck P, Lossy D, Benoît J. 2012. Forages, sondages et essais in situ géotechniques : les outils pour la reconnaissance des sols et des roches [Drilling, sounding and geotechnical in situ tests: Tools for soil and rock investigation]. Paris : Presses des Ponts (in French). [Google Scholar]
- Renoud-Lias B. 1978. Étude du pressiomètre en milieu pulvérulent [Study of the pressuremeter in granular medium]. PhD thesis, Grenoble University I, 147 p. (in French). [Google Scholar]
- Robertson PK. 1990. Soil classification using the cone penetration test. Can Geotech J 27(1): 151–158. [CrossRef] [Google Scholar]
- Robertson PK. 2009. Evaluation of flow liquefaction and liquefied strength using the cone penetration test. J Geotech Geoenviron Eng 136(6): 842–853. [Google Scholar]
- Robertson PK, Campanella RG. 1983. Interpretation of cone penetration tests - Part I (sand). Can Geotech J 20(4): 718–733. https://doi.org/10.1139/t83-078. [CrossRef] [Google Scholar]
- Robertson PK, Wride CE. 1998. Evaluating cyclic liquefaction potential using the cone penetration test. Can Geotech J (35): 442–459. [CrossRef] [Google Scholar]
- Salgado R, Prezzi M. 2007. Computation of cavity expansion pressure and penetration resistance in sands. Int J Geomech 7(4): 251–265. [CrossRef] [Google Scholar]
- Schnaid F, Houlsby GT. 1992. Measurement of the properties of sand in a calibration chamber by the cone pressuremeter test. Geotechnique 42(4): 587–601. [CrossRef] [Google Scholar]
- Seed HB, Idriss IM. 1971. Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found Div 97(9): 1249–1273. [CrossRef] [Google Scholar]
- Seed HB, Peacock WH. 1971. Test procedures for measuring soil liquefaction characteristics. J Soil Mech Found Div , ASCE 97(SM8): 1099–1119. [CrossRef] [Google Scholar]
- Seed HB, Idriss IM. 1982. Ground motions and soil liquefaction during earthquakes. California: Research Institute. [Google Scholar]
- Seed HB, de Alba PM. 1986. Use of SPT and CPT tests for evaluating the liquefaction resistance of sands. In: Proceedings of ASCE Special Conference on Use of in situ Testing in Geotechnical Engineering, Special Publication No.6, pp. 281–302. [Google Scholar]
- Seed RB, Harder LF. 1990. SPT-based analysis of cyclic pore pressure generation and undrained residual strength. In: H. Bolton Seed Memorial Symposium Proceedings (2), pp. 351–376. [Google Scholar]
- Seed HB, Idriss IM, Arango I. 1983. Evaluation of liquefaction potential using field performance data. J Geotech Eng 109(3): 458–482. [CrossRef] [Google Scholar]
- Seed HB, Tokimatsu K, Harder LF, Chung RM. 1985. Influence of SPT procedures in soil liquefaction resistance evaluations. J Geotech Eng 111(12): 1425–1445. [CrossRef] [Google Scholar]
- Tsukamoto Y, Hyodo T, Hashimoto K. 2016. Evaluation of liquefaction resistance of soils from Swedish weight sounding tests. Soils and Foundations 56(1): 104–114. https://doi.org/10.1016/j.sandf.2016.01.008. [CrossRef] [Google Scholar]
- Youd TL, Idriss IM. 1997. Summary papers. In: Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soil, Salt Lake City, January 5-6, 1996, UT, Technical Report NCEER-97-0022, National Center for Earthquake Engineering Research, University at Buffalo. [Google Scholar]
- Youd TL, Idriss IM, Andrus RD, et al. 2001. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. J Geotech Geoenviron Eng 127(10): 817–833. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.