Free Access
Rev. Fr. Geotech.
Number 153, 2017
Article Number 2
Number of page(s) 15
Published online 08 January 2018
  • Abbasi N, Rahimi H, Javadi A, Faker A. 2007. Finite difference approach for consolidation with variable compressibility and permeability. Comput Geotech 34 (1): 41–52. [CrossRef] [Google Scholar]
  • Al Shamrani. 2004. Applying the hyperbolic method and Ca/Cc concept for settlement prediction of complex organic-rich soil formations. Eng Geol 77: 17–34. [Google Scholar]
  • Amiri SN, Esmaeily A, Mahouti A. 2011. A Realistic Theory of Soils Consolidation. Geo-Frontiers 2011 Conference, Dallas, Texas, pp. 3828–3837. [Google Scholar]
  • Asaoka A. 1978. Observational procedure of settlement prediction. Soils Found 18 (4): 87–100. [CrossRef] [Google Scholar]
  • Baguelin F. 1999. La détermination des tassements finaux de consolidation : une alternative à la méthode d'Asaoka. Rev Fr Geotech 86: 9–17. [CrossRef] [Google Scholar]
  • Barden L. 1969. Time dependent deformation of normally consolidated clays and peats. ASCE- J Soil Mech Found Div 95 (SM1): 1–31. [Google Scholar]
  • Biot MA. 1941. General theory of three dimensional consolidation. Appl Phys 12: 2. [CrossRef] [Google Scholar]
  • Bjerrum L. 1967. Seventh Rankine Lecture. Engineering geology of normally- consolidated marine clays as related to settlements of buildings. Geotech 17 (2): 82–118. [Google Scholar]
  • Buisman AS Keverling. 1936. Results of long duration settlement tests. Proc., Intern. Conf. on Soil Mech. and Found. Engr., vol. 1, pp. 103–106. [Google Scholar]
  • Conte E, Troncone A. 2007. Nonlinear consolidation of thin layers subjected to time-dependent loading. Can Geotech J 44 (1): 717–725. [CrossRef] [Google Scholar]
  • Crawford Carl B. 1964. Interpretation of the Consolidation Test, Proc., ASCE, vol. 90, No. SM5, pp. 87–102. [Google Scholar]
  • Delage P, Lefebvre G. 1984. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation. Can Geotech J 21 (1): 21–35. [CrossRef] [Google Scholar]
  • Félix B. 1980. Fluage et consolidation unidimensionnelle des sols argileux. Laboratoire central des ponts et chaussées. Rapp recherche LPC 94: 176. [Google Scholar]
  • Félix B. 1981. Présentation d'un nouveau modèle rhéologique et de ses applications à la théorie de la consolidation. Bull Liaison Lab Ponts Chaussées 111: 92–103. [Google Scholar]
  • Gibson RE, Lo KY. 1961. A theory of consolidation for soils exhibiting secondary compression. Nor Geotech Ins Oslo 41: 1–16. [Google Scholar]
  • Gibson RE, Schiffman RL, Cargill KW. 1981. The theory of one-dimensional consolidation of saturated clays, II. Finite nonlinear consolidation of thick homogeneous layers. Can Geotech J 18: 280–293. [CrossRef] [Google Scholar]
  • Griffiths FJ, Joshi RC. 1991. Change in pore size distribution owing to secondary consolidation of clays. Can Geotech J 28 (1): 20–24. [CrossRef] [Google Scholar]
  • Koppejan AW. 1948. A formula combining the Terzaghi load compression relationship and the Buisman secular time effect, Proc. 2th. Int. Conference Soil Mechanics and Foundation Engineering, Rotterdam. [Google Scholar]
  • Leonards GA, Ramiah BK. 1959. Time effects in the consolidation of clays. In “Time rate of loading in testing soils”. ASCE Special Tech Publ 254: 116–130. [Google Scholar]
  • Lowe J. 1974. News concepts in consolidation and settlement analysis. ASCE-J Geotech Eng Div 100 (6): 571–612. [Google Scholar]
  • Magnan JP. 1986. Modélisation numérique du comportement des argiles molles naturelles, L.C.P.C., Paris. Rapport de Recherche LPC, no 141, 255 p. [Google Scholar]
  • Magnan JP, Baghery S. 1981. Une méthode approchée pour la prévision des vitesses de tassement des sols fins doués de fluage. Bull Liaison Lab Ponts Chaussées 111: 87–91. [Google Scholar]
  • Magnan JP, Deroy JM. 1980. Analyse graphique des tassements observés sous les ouvrages. Bull Liaison Lab Ponts Chaussées 109: 45–52. [Google Scholar]
  • Magnan JP, Baghery S, Brucy M, Tavenas F. 1979. Étude numérique de la consolidation unidimensionnelle en tenant compte des variations de la perméabilité et de la compressibilité du sol, du fluage et de la non- saturation. Bull Liaison Lab Ponts Chaussées 103: 83–94. [Google Scholar]
  • Mesri G. 1973. Coefficient of secondary compression. J Soil Mech Found Div ASCE 99 (SM1): 123–137. [Google Scholar]
  • Mesri G, Godlewski PM. 1977. Time- and stress- compressibility interrelationship. J Geotech Eng Div ASCE 103 (GT5): 417–430. [Google Scholar]
  • Nakaoka K, Yamamoto S, Hasegawa H, et al. 2004. Long-term consolidation mechanisms based on micro-macro behavior and in situ XRD measurement of basal spacing of clay minerals. Appl Clay Sci 26 (1): 521–533. [CrossRef] [Google Scholar]
  • Olson RE. 1989. Secondary consolidation. Chaoyang University of Technology, Department of Construction Engineering: Advanced Soil Mechanics. [Google Scholar]
  • Philipponnat G, Hubert B. 2011. Fondations et ouvrages en terre. Paris : Eyrolles. [Google Scholar]
  • Poskitt TJ. 1969. The consolidation of saturated clay with variable permeability and compressibility. Geotechnique 19(2). [Google Scholar]
  • Schlosser F. 1973. Hypothèses et théories pour la prévision des tassements des remblais sur sols compressibles. Bull Liaison Lab Ponts Chaussées no spécial T. [Google Scholar]
  • Skempton AW, Bjerrum L. 1957. A contribution to the settlement analysis of foundations on clay. Geotech 7 (4): 168. [CrossRef] [Google Scholar]
  • Sridharan A, Sreepada Rao A. 1981. Rectangular hyperbola fitting method for one-dimensional consolidation. Geotech Test J 4: 161–168 [Google Scholar]
  • Sridharan A, Murthy NS, Prakash K. 1987. Rectangular hyperbola method of consolidation analysis. Geotech 37: 355–368. [Google Scholar]
  • Tan S-A, Chew S-H. 1996. Comparaison of the hyperbolic and Asoaka observational method of monitoring consolidation with vertical drains. Soils Found Jpn Geotech Soc. 36(3): 31–42. [CrossRef] [Google Scholar]
  • Tan TS, Inoue T, Lee SL. 1991. Hyperbolic method for consolidation analysis. J Geotech Eng ASCE 117(11): 1723–1737. [CrossRef] [Google Scholar]
  • Tavenas F, Brucy M, Magnan JP, La Rochelle P, Roy M. 1979. Analyse critique de la théorie de consolidation unidimensionnelle de Terzaghi. Rev Fr Geotech 5 (7): 29–43. [CrossRef] [Google Scholar]
  • Taylor DW. 1948. Fundamentals of soil mechanics. New-York, NY: John Wiley & Sons. [Google Scholar]
  • Taylor DW, Merchant W. 1940. Theory of lays consolidation accounting for secondary compression. J Math Phys 19 (3): 167–185. [CrossRef] [Google Scholar]
  • Terzaghi K. 1923. Die Berechnung der Durchlässigkeit des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Akademie der Wissenschaften, Wien, Sitzungsberichte, Math. Naturwiss. KJasse, part. Ii-a, vol. 132 (3/4), pp. 125–138. [Google Scholar]
  • Thompson James B, Palmer LA. 1951. Report of Consolidation Tests with Peat, ASTM STP No 126, pp. 4–8. [Google Scholar]
  • Vasseur G, Djeran-Maigre I, Grunberg D, Rousset G, Tessier D. 1995. Evolution of structural and physical parameters of clays during experimental compaction. Mar Pet Geol 12 (8): 941–954. [CrossRef] [Google Scholar]
  • Wang YH, Xu D. 2007. Dual porosity and secondary consolidation. J Geotech Geoenvironmental Eng 133 (7): 793–801. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.