Free Access
Rev. Fr. Geotech.
Number 153, 2017
Article Number 1
Number of page(s) 21
Published online 01 December 2017
  • Abaqus/Standard Users' Manual, Version 6.14. 2014. [Google Scholar]
  • Alves AMM, Lopes FR, Danzinger BR. 2008. Dimensional analysis of the wave equation applied to pile driving. In: Santos JA, ed. Proceedings of the 8th Stress Wave Conference. Porto: IOS Press, pp. 115–212. [Google Scholar]
  • American Petroleum Institute, API. 2011. Geotechnical and foundation design considerations, ANSI/API Recommended Practice 2GEO, ISO 1991-4:2003 (Modified) − Specific requirements for offshore structures, Part 4, 1st edition, April 2001, 103 p. [Google Scholar]
  • D'alembert J. Le Rond 1747. Articles extraits de l'Histoire de l'Académie des Sciences et Belles-Lettres de Berlin − Année 1747, Berlin, 1749. [Google Scholar]
  • De Saint Venant B. 1867. Mémoire sur le choc de deux barres élastiques. J Math (Liouville): 237–375. [Google Scholar]
  • Hamdi S. 2016. Pipe pile driving into rock, Ph.D. Thesis. Louvain-la-Neuve, Belgique: Université catholique de Louvain (UCL), 159 p. [Google Scholar]
  • Hamdi S, Holeyman A. 2015. Numerical modeling of cylindrical cavity expansion in rock mass based on the Hoek-Brown yield criterion, in "International Symposium 60 years of pressuremeters"- Hammamet. Tunisia (ISBN : 978-9938-12-937-3): 189–196. [Google Scholar]
  • Henke S, Grabe J. 2008. Numerical investigation of soil plugging inside open-ended piles with respect to the installation method. Acta Geotechnica 3: 215–223. DOI: 10.1007/s11440-008-0079-7. [CrossRef] [Google Scholar]
  • Hoek E, Brown ET. 1980. Empirical strength criterion for rock masses. J Geotech Eng Div ASCE 106: 1013–1035. [Google Scholar]
  • Hoek E, Brown ET. 1988. The Hoek-Brown failure criterion − a 1988 update. In : Curran JC, ed. Proc. 15th Canadian Rock Mech. Symp, Toronto: Dept. Civil Engineering, University of Toronto, pp. 31–38. [Google Scholar]
  • Hoek E, Carranza-Torres C, Corkum B. 2002. Hoek-Brown Failure Criterion − 2002 Édition, Proc. NARMS Conference, Toronto, pp. 267–273. [Google Scholar]
  • Holeyman A. 1984. Contribution à l'étude du comportement transitoire non-linéaire des pieux pendant leur battage. Thèse de doctorat, Université Libre de Bruxelles, Avril, 584 p. [Google Scholar]
  • Holeyman A. 1992. Technology of pile dynamic testing. In : Barends F, ed. Application of Stress-Wave Theory to Piles. Rotterdam: Balkema, pp. 195–215. [Google Scholar]
  • Holeyman A, Whenham V. 2015. Axial non-linear dynamic soil-pile interaction. In : Belhaq M, ed. Structural nonlinear dynamics and diagnosis, pp. 305–334 (ISBN : ISBN 978-3-319-19851-4). Available from: [CrossRef] [Google Scholar]
  • Holeyman A, Whenham V. 2017. Critical review of the hypervib1 model to assess pile vibro-drivability. Geotech Geol Eng: an international journal 2017(2): 1–19. Available from: [Google Scholar]
  • Holeyman A, Bertin R, Whenham V. 2013. Impedance of pile shafts under axial vibratory loads. Soil Dyn Earthq Eng 44: 115–126. Available from: [CrossRef] [Google Scholar]
  • Holeyman AE. 1988. Modelling of dynamic behaviour at the pile base. Proceedings of the 3rd International Conference on the Application of Stress-Wave Theory to Piles. Ottawa, Canada, pp. 174–185. [Google Scholar]
  • Isaacs DV. 1931. Reinforced concrete pile formulae, Paper No. 370, Transactions of the Institution of Engineers, Australia, Vol. XII, pp. 371–399. [Google Scholar]
  • Jablonski J, Carlucci P, Thyagarajan R, Nandi B, Arata J. 2012. Simulating underbelly blast events using Abaqus/Explicit − CEL, SIMULIA Customer Conference. [Google Scholar]
  • Marinos V, Marinos P, Hoek E. 2005. The geological strength index, applications and limitations. Bull Eng Geol Environ 64: 55–65. [CrossRef] [Google Scholar]
  • Norme Française NF EN 1997-1, Eurocode 7. 2005. Calcul géotechnique, Partie 1 : Règles générales, 146 p. [Google Scholar]
  • Norme Française NF EN 1997-1/NA. 2006. Annexe nationale à la NF EN 1997-1, Eurocode 7, 11 p. [Google Scholar]
  • Norme Française NF P 94-262. 2012. Justification des ouvrages géotechniques, Normes d'application nationale de l'Eurocode 7, Fondations Profondes, 205 p. [Google Scholar]
  • Priest S. 2005. Determination of shear strength and three-dimensional yield strength for the Hoek-Brown criterion. Rock Mech Rock Eng 38: 299–327. [CrossRef] [Google Scholar]
  • Puech A, Poulet D, Boisard P. 1990. A procedure to evaluate pile drivability in the difficult soil conditions of the southern part of the Gulf of Guinea, Offshore Technology Conference Paper OTC 6237, pp. 327–334. [Google Scholar]
  • Qiu G, Henke S, Grabe J. 2011. Application of a coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations. Comput Geotech 38: 30–39. [Google Scholar]
  • Ribacchi R. 2000. Mechanical tests on pervasively jointed rock material: insight into rock mass behaviour. Rock Mech Rock Eng 33(4): 243–266. [CrossRef] [Google Scholar]
  • Smith EAL. 1960. Pile driving analysis by the wave equation. J Soil Mech Found Div (ASCE) 6: 35–61. [Google Scholar]
  • UCL. 2016. Rapport interne d'avancement du projet de recherche FONDEOLE, Convention no 1250394 de subvention par la Région Wallonne pour une recherche industrielle d'intérêt général, janvier 2016, 235 p. [Google Scholar]
  • Upwind − Integrated Wind Turbine Design (2010), Project funded by the European Commission under the 6th (EC) RTD Project No. 019945 (SE6) [Google Scholar]
  • Victor KH. 2017. Communication personnelle. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.