Accès gratuit
Numéro
Rev. Fr. Geotech.
Numéro 165, 2020
Microstructure des matériaux argileux – conséquences pour l’ingénieur
Numéro d'article 1
Nombre de pages 12
DOI https://doi.org/10.1051/geotech/2020024
Publié en ligne 22 janvier 2021
  • Andrews IJ. 2013. The Carboniferous Bowland Shale gas study: geology and resource estimation. In: BGS Report. [Google Scholar]
  • Bauer-Plaindoux C, Tessier D, Ghoreychi M. 1998. Propriétés mécaniques des roches argileuses carbonatées : importance de la relation calcite-argile. C R Acad Sci Ser IIA Earth Planet Sci 326(4): 231–237. [Google Scholar]
  • Bennett RH, Bryant WR, Hulbert MH. 1991. Microstructure of fine-grained sediments. From mud to shale. In: Frontiers in Sedimentary Geology. New York: Springer, pp. 582. [Google Scholar]
  • Bonin B. 1998. Deep geological disposal in argillaceous formations: studies at the Tournemire test site. J Contam Hydrol 35(1–3): 315–330. [CrossRef] [Google Scholar]
  • Bonnelye A, Schubnel A, David C, et al. 2017a. Elastic wave velocity evolution of shales deformed under uppermost crustal conditions. J Geophys Res Solid Earth 122(1): 130–141. [CrossRef] [Google Scholar]
  • Bonnelye A, Schubnel A, David C, et al. 2017b. Strength anisotropy of shales deformed under uppermost crustal conditions. J Geophys Res Solid Earth 122(1): 110–129. [CrossRef] [Google Scholar]
  • Bossart P, Meier PM, Moeri A, Trick T, Mayor JC. 2002. Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory. Eng Geol 66(1–2): 19–38. [CrossRef] [Google Scholar]
  • Bossart P, Bernier F, Birkholzer J, et al. 2018. Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments. In: Mont Terri Rock Laboratory, 20 Years. Birkhäuser: Cham, pp. 3–22. [CrossRef] [Google Scholar]
  • Buckman J, Mahoney C, Bankole S, et al. 2018. Workflow model for the digitization of mudrocks. Geol Soc Lond Spec Publ 484: SP484–SP482. [Google Scholar]
  • Cabrera J, Beaucaire C, Bruno G, et al. 2001. Projet Tournemire − Synthèse des programmes de recherche 1995–1999. In: Rapport IPSN: DPRE/SERGD:01-19. [Google Scholar]
  • Chalmers GR, Bustin RM, Power IM. 2012. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull 96(6): 1099–1119. [CrossRef] [Google Scholar]
  • Charpentier D, Cathelineau M, Mosser-Ruck R, Bruno G. 2001. Évolution minéralogique des argilites en zone sous-saturée oxydée : exemple des parois du tunnel de Tournemire (Aveyron, France). C R Acad Sci Paris Sci Terre Planètes 332: 601–607. [CrossRef] [Google Scholar]
  • Cnudde V, Boone MN. 2013. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci Rev 123: 1–17. [CrossRef] [Google Scholar]
  • Cosenza P, Hédan S, Valle V. 2016. Caractérisation non destructive de la zone endommagée des galeries souterraines excavées dans les roches argileuses. Rev Fr Geotech (148): 4. [CrossRef] [Google Scholar]
  • Cosenza P, Fauchille AL, Prêt D, Hédan S, Giraud A. 2019. Statistical representative elementary area of shale inferred by micromechanics. Int J Eng Sci 142: 53–73. [CrossRef] [Google Scholar]
  • David C, Robion P, Menéndez B. 2007. Anisotropy of elastic, magnetic and microstructural properties of the Callovo-Oxfordian argillite. Phys Chem Earth A/B/C 32(1–7): 145–153. [CrossRef] [Google Scholar]
  • Desbois G, Urai JL, Kukla PA, Konstanty J, Baerle C. 2011. High-resolution 3D fabric and porosity model in a tight gas sandstone reservoir: a new approach to investigate microstructures from mm-to nm-scale combining argon beam cross-sectioning and SEM imaging. J Pet Sci Eng 78(2): 243–257. [CrossRef] [Google Scholar]
  • Desbois G, Höhne N, Urai JL, Bésuelle P, Viggiani G. 2017. Deformation in cemented mudrock (Callovo-Oxfordian Clay) by microcracking, granular flow and phyllosilicate plasticity: insights from triaxial deformation, broad ion beam polishing and scanning electron microscopy. Solid Earth 8(2): 291. [CrossRef] [Google Scholar]
  • Dvorkin J. 2009. Digital rock physics bridges scales of measurement. In: Rock Physics E&P. [Google Scholar]
  • Fauchille AL, Hédan S, Prêt D, Valle V, Cabrera J, Cosenza P. 2014. Relationships between desiccation cracking behavior and microstructure of the Tournemire clay rock by coupling DIC and SEM methods. In: Proceedings of IS on Geomechanics from Micro to Macro, Cambridge, UK. Leiden, The Netherlands: CRC Press/Balkema, pp. 1421–1424. [CrossRef] [Google Scholar]
  • Fauchille AL. 2015. Déterminismes microstructuraux et minéralogiques de la fissuration hydrique dans les argilites de Tournemire : apports couplés de la pétrographie quantitative et de la corrélation d’images numériques. Thèse de doctorat. France: Université de Poitiers. [Google Scholar]
  • Fauchille AL, Hédan S, Valle V, Prêt D, Cabrera J, Cosenza P. 2016. Multi-scale study on the deformation and fracture evolution of clay rock sample subjected to desiccation. Appl Clay Sci 132: 251–260. [CrossRef] [Google Scholar]
  • Fauchille AL, Ma L, Rutter E, Chandler M, Lee PD, Taylor KG. 2017. An enhanced understanding of the Basinal Bowland shale in Lancashire (UK), through microtextural and mineralogical observations. Mar Pet Geol 86: 1374–1390. [CrossRef] [Google Scholar]
  • Fauchille AL, van den Eijnden AP, Ma L, et al. 2018. Variability in spatial distribution of mineral phases in the Lower Bowland Shale, UK, from the mm-to µm-scale: Quantitative characterization and modelling. Mar Pet Geol 92: 109–127. [CrossRef] [Google Scholar]
  • Fauchille AL, Hédan S, Valle V, Prêt D, Cabrera J, Cosenza P. 2019. Effect of microstructure on hydric strain in clay rock: A quantitative comparison. Appl Clay Sci 182: 105244. [CrossRef] [Google Scholar]
  • Figueroa Pilz F, Dowey PJ, Fauchille AL, Courtois L, Bay B, Ma L, Taylor KG, Mecklenburgh J, Lee PD. 2017. Synchrotron tomographic quantification of strain and fracture during simulated thermal maturation of an organic‐rich shale, UK Kimmeridge Clay. J Geophys Res Solid Earth 122(4): 2553–2564. [CrossRef] [Google Scholar]
  • Gaboreau S, Prêt D, Tinseau E, Claret F, Pellegrini D, Stammose D. 2011. 15 years of in situ cement–argillite interaction from Tournemire URL: Characterisation of the multi-scale spatial heterogeneities of pore space evolution. Appl Geochem 26(12): 2159–2171. [CrossRef] [Google Scholar]
  • Gaboreau S, Robinet JC, Prêt D. 2016. Optimization of pore-network characterization of a compacted clay material by TEM and FIB/SEM imaging. Microporous Mesoporous Mater 224: 116–128. [CrossRef] [Google Scholar]
  • Garcia MH, Rabaute A, Yven B, Guillemot D. 2011. Multivariate and spatial statistical analysis of Callovo-Oxfordian physical properties from lab and borehole logs data: towards a characterization of lateral and vertical spatial trends in the Meuse/Haute-Marne Transposition Zone. Phys Chem Earth A/B/C 36(17–18): 1469–1485. [CrossRef] [Google Scholar]
  • Gasc-Barbier M, Cosenza P, Ghoreychi M, Chanchole S, Tessier D. 2000. Conception d’un essai triaxial à succion contrôlée. C R Acad Sci Earth Planet Sci 330: 97–103. [Google Scholar]
  • Gasc-Barbier M, Chanchole S, Bérest P. 2004. Creep behavior of Bure clayey rock. Appl Clay Sci 26(1–4): 449–458. [CrossRef] [Google Scholar]
  • Gaucher E, Robelin C, Matray JM, et al. 2004. ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian–Oxfordian formation by investigative drilling. Phys Chem Earth A/B/C 29(1): 55–77. [CrossRef] [Google Scholar]
  • Ghorbani A, Zamora M, Cosenza P. 2009. Effects of desiccation on the elastic wave velocities of clay-rocks. Int J Rock Mech Min Sci 46(8): 1267–1272. [CrossRef] [Google Scholar]
  • Hammes U, Hamlin HS, Ewing TE. 2011. Geologic analysis of the Upper Jurassic Haynesville Shale in east Texas and west Louisiana. AAPG Bull 95(10): 1643–1666. [CrossRef] [Google Scholar]
  • Hédan S, Cosenza P, Valle V, Dudoignon P, Fauchille AL, Cabrera J. 2012. Investigation of the damage induced by desiccation and heating of Tournemire argillite using digital image correlation. Int J Rock Mech Min Sci 51: 64–75. [CrossRef] [Google Scholar]
  • Hédan S, Fauchille AL, Valle V, Cabrera J, Cosenza P. 2014. One-year monitoring of desiccation cracks in Tournemire argillite using digital image correlation. Int J Rock Mech Min Sci 68: 22–35. [CrossRef] [Google Scholar]
  • Hédan S, Valle V, Cabrera J, Cosenza P. 2018. A new approach to quantify the anisotropy of hydromechanical strains in clay-rock at the gallery scale. Int J Rock Mech Min Sci 111: 45–53. [CrossRef] [Google Scholar]
  • Houben ME, Barnhoorn A, Wasch L, Trabucho-Alexandre J, Peach CJ, Drury MR. 2016. Microstructures of early jurassic (toarcian) shales of northern Europe. Int J Coal Geol 165: 76–89. [CrossRef] [Google Scholar]
  • Jarvie DM. 2012. Shale resource systems for oil and gas: Part 2—Shale-oil resource systems. [Google Scholar]
  • Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D. 2003. Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13–14): 3647–3679. [CrossRef] [Google Scholar]
  • Keller LM, Schuetz P, Erni R, et al. 2013. Characterization of multi-scale microstructural features in Opalinus Clay. Microporous Mesoporous Mater 170: 83–94. [CrossRef] [Google Scholar]
  • Ketcham RA, Carlson WD. 2001. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput Geosci 27(4): 381–400. [CrossRef] [Google Scholar]
  • Klaver J, Desbois G, Urai JL, Littke R. 2012. BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany. Int J Coal Geol 103: 12–25. [CrossRef] [Google Scholar]
  • Klaver J, Desbois G, Littke R, Urai JL. 2015. BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales. Mar Pet Geol 59: 451–466. [CrossRef] [Google Scholar]
  • Lemmens H, Richards D. 2013. Multiscale Imaging of Shale Samples in the Scanning Electron Microscope. In: AAPG Memoir 102: Electron Microscopy of shale hydrocarbon reservoirs, 27, p. 35. [Google Scholar]
  • Lerouge C, Robinet JC, Debure M, et al. 2018. A deep alteration and oxidation profile in a shallow clay aquitard: Example of the Tégulines Clay, East Paris Basin, France. Geofluids. [Google Scholar]
  • Ma L, Taylor KG, Lee PD, Dobson KJ, Dowey PJ, Courtois L. 2016. Novel 3D centimetre-to nano-scale quantification of an organic-rich mudstone: the Carboniferous Bowland Shale, Northern England. Mar Pet Geol (72): 193–205. [CrossRef] [Google Scholar]
  • Ma L, Fauchille AL, Dowey PJ, et al. 2017. Correlative multi-scale imaging of shales: a review and future perspectives. Geol Soc Lond Spec Publ 454: SP454–SP411. [Google Scholar]
  • Meier T, Rybacki E, Reinicke A, Dresen G. 2013. Influence of borehole diameter on the formation of borehole breakouts in black shale. Int J Rock Mech Min Sci 62: 74–85. [CrossRef] [Google Scholar]
  • Milner M, McLin R, Petriello J. 2010. Imaging texture and porosity in mudstones and shales: comparison of secondary and ion-milled backscatter SEM methods. In: Canadian unconventional resources and international petroleum conference. Society of Petroleum Engineers. [Google Scholar]
  • Montès HG, Duplay J, Martinez L, Escoffier S, Rousset D. 2004. Structural modifications of Callovo-Oxfordian argillite under hydration/dehydration conditions. Appl Clay Sci 25: 187–194. [CrossRef] [Google Scholar]
  • Newport SM, Jerrett RM, Taylor KG, Hough E, Worden RH. 2018. Sedimentology and microfacies of a mud-rich slope succession: in the Carboniferous Bowland Basin, NW England (UK). J Geol Soc 175(2): 247–262. [CrossRef] [Google Scholar]
  • Noiret A. 2009. Contribution à la caractérisation du comportement géomécanique des roches couverture des réservoirs pétroliers. Thèse de doctorat. France: Institut national polytechnique de Lorraine. [Google Scholar]
  • Nussbaum C, Bossart P, Amann F, Aubourg C. 2011. Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland). Swiss J Geosci 104(2): 187. [CrossRef] [Google Scholar]
  • Okay G, Cosenza P, Ghorbani A, et al. 2013. Localization and characterization of cracks in clay-rocks using frequency and time-domain induced polarization. Geophys Prospect 61(1): 134–152. [CrossRef] [Google Scholar]
  • Pettijohn FJ. 1957. Sedimentary rocks (vol. 2). New York: Harper & Brothers. [Google Scholar]
  • Prêt D, Sammartino S, Beaufort D, Meunier A, Fialin M, Michot LJ. 2010. A new method for quantitative petrography based on image processing of chemical element maps: part I. Mineral mapping applied to compacted bentonites. Am Mineral 95(10): 1379–1388. [CrossRef] [Google Scholar]
  • Pham QT, Vales F, Malinsky L, Minh DN, Gharbi H. 2007. Effects of desaturation–resaturation on mudstone. Phys Chem Earth A/B/C 32(8–14): 646–655. [CrossRef] [Google Scholar]
  • Robinet JC, Sardini P, Coelho D, et al. 2012. Effects of mineral distribution at mesoscopic scale on solute diffusion in a clay-rich rock: example of the Callovo-Oxfordian mudstone (Bure, France). Water Resour Res 48(5). [CrossRef] [Google Scholar]
  • Robinet JC, Sardini P, Siitari-Kauppi M, Prêt D, Yven B. 2015. Upscaling the porosity of the Callovo-Oxfordian mudstone from the pore scale to the formation scale; insights from the 3H-PMMA autoradiography technique and SEM BSE imaging. Sediment Geol 321: 1–0. [CrossRef] [Google Scholar]
  • Rybacki E, Herrmann J, Wirth R, Dresen G. 2017. Creep of posidonia shale at elevated pressure and temperature. Rock Mech Rock Eng 50(12): 3121–3140. [CrossRef] [Google Scholar]
  • Sammartino S, Bouchet A, Prêt D, Parneix JC, Tevissen E. 2003. Spatial distribution of porosity and minerals in clay rocks from the Callovo-Oxfordian formation (Meuse/Haute-Marne, Eastern France) − implications on ionic species diffusion and rock sorption capability. Appl Clay Sci 23(1–4): 157–166. [CrossRef] [Google Scholar]
  • Sardini P, El Albani A, Pret D, Gaboreau S, Siitari-Kauppi M, Beauforts D. 2009. Mapping and quantifying the clay aggregate microporosity in medium-to coarse-grained sandstones using the 14C-PMMA method. J Sediment Res 79(8): 584–592. [CrossRef] [Google Scholar]
  • Shen WQ, Shao JF, Kondo D, Gatmiri B. 2012. A micro–macro model for clayey rocks with a plastic compressible porous matrix. Int J Plast 36: 64–85. [CrossRef] [Google Scholar]
  • Soe AKK, Osada M, Takahashi M, Sasaki T. 2009. Characterization of drying-induced deformation behaviour of Opalinus Clay and tuff in no-stress regime. Environ Geol 58(6): 1215–1225. [CrossRef] [Google Scholar]
  • Sone H, Zoback MD. 2013. Mechanical properties of shale-gas reservoir rocks—Part 1: static and dynamic elastic properties and anisotropy. Geophysics 78(5): D381–D392. [CrossRef] [Google Scholar]
  • Stavropoulou E, Andò E, Tengattini A, et al. 2018. Liquid water uptake in unconfined Callovo Oxfordian clay-rock studied with neutron and X-ray imaging. Acta Geotech: 1–15. [Google Scholar]
  • Thury M. 2002. The characteristics of the Opalinus Clay investigated in the Mont Terri underground rock laboratory in Switzerland. C R Phys 3(7–8): 923–933. [CrossRef] [Google Scholar]
  • Tsang CF, Barnichon JD, Birkholzer J, Li XL, Liu HH, Sillen X. 2012. Coupled thermo-hydro-mechanical processes in the near field of a high-level radioactive waste repository in clay formations. Int J Rock Mech Min Sci 49: 31–44. [CrossRef] [Google Scholar]
  • Wang L. 2012. Micromechanical experimental investigation and modelling of strain and damage of argillaceous rocks under combined hydric and mechanical loads. PhD thesis of École polytechnique, France. [Google Scholar]
  • Wang L, Bornert M, Chanchole S, et al. 2013. Microscale experimental investigation of the swelling anisotropy of the Callovo-Oxfordian argillaceous rock. Clay Min 48: 391–402. [CrossRef] [Google Scholar]
  • Wang L, Bornert M, Héripré E, Chanchole S, Pouya A, Halphen B. 2015. Microscale insight into the influence of humidity on the mechanical behavior of mudstones. J Geophys Res Solid Earth 120(5): 3173–3186. [CrossRef] [Google Scholar]
  • Wentworth CK. 1922. A scale of grade and class terms for clastic sediments. J Geol 30(5): 377–392. [CrossRef] [Google Scholar]
  • Yang DS, Bornert M, Chanchole S, Gharbi H, Valli P, Gatmiri B. 2012. Dependence of elastic properties of argillaceous rocks on moisture content investigated with optical full-field strain measurement techniques. Int J Rock Mech Min Sci 53: 45–55. [CrossRef] [Google Scholar]
  • Yven B, Sammartino S, Geraud Y, Homand F, Villieras F. 2007. Mineralogy, texture and porosity of Callovo-Oxfordian argillites of the Meuse/Haute-Marne region (eastern Paris Basin). Mem Soc Geol Fr 178(1): 73–90. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.