Free Access
Issue
Rev. Fr. Geotech.
Number 175, 2023
Article Number 5
Number of page(s) 15
DOI https://doi.org/10.1051/geotech/2023014
Published online 23 October 2023
  • Alizadeh F, Goldfarb D. 2003. Second-order cone programming. Math Progr, Series B 95: 3–51. [CrossRef] [Google Scholar]
  • Alizadeh F, Haeberly JA, Overton M. 1998. Primal-dual interior-point methods for semi definite programming: Convergence rates, stability and numerical results. SIAM J Optim 8: 746–768. [CrossRef] [Google Scholar]
  • Anderheggen E, Knöpfel H. 1972. Finite element limit analysis using linear programming. Int J Solids Struct 8: 1413–1431. [CrossRef] [Google Scholar]
  • Andersen ED, Roos C, Terlaky T. 2003. On implementing a primal-dual interior-point method for conic quadratic optimization. Math Progr 95: 249–277. [CrossRef] [Google Scholar]
  • Andersen KD, Christiansen E. 1995. Limit analysis with the dual affine scaling algorithm. J Comput Appl Math 59: 233–243. [CrossRef] [Google Scholar]
  • Belytschko T, Hodge PG. 1970. Plane stress limit analysis by finite elements. J Eng Mech Div ASCE 96(EM6): 931–944. [CrossRef] [Google Scholar]
  • Ben-Tal A, Nemirovski A. 2001. Lectures on “Modern convex optimization: Analysis, algorithms, and engineering applications”. MPS-SIAM Series on Optimization. [Google Scholar]
  • Bleyer J, de Buhan P. 2013. Yield surface approximation for lower and upper bound yield design of 3D composite frame structures. Comput Struct 129: 86–98. [CrossRef] [Google Scholar]
  • Bottero A, Negre R, Pastor J, Turgeman S. 1980. Finite element method and limit analysis for soil mechanics problems. Comput Meth Appl Mech Eng 22: 131–149. [CrossRef] [Google Scholar]
  • Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. 2014. Distributed optimization and statistical learning via the alternating direction method of multipliers. Now Publ Inc 3: 1–122. [Google Scholar]
  • Charnes A, Greenberg HJ. 1951. Plastic collapse and linear programming. Bull Am Math Soc 57(6): 480. [Google Scholar]
  • Chen WF, Liu XL. 1990. Limit analysis in soil mechanics. Amsterdam: Elsevier Science Publishers B.V. [Google Scholar]
  • da Silva MJV. 2020. Lower and upper bound limit analysis via the alternating direction method of multipliers. Comput Geotech 124: 103571. [CrossRef] [Google Scholar]
  • Danzig GB. 1985. Impact of linear programming on computer development. Systems Optimization Laboratory, Stanford University. [Google Scholar]
  • Dorn WS, Greenberg HJ. 1957. Plastic collapse and linear programming. Q Appl Math 15(2): 155–167. [CrossRef] [Google Scholar]
  • Drucker DC, Greenberg HJ, Prager W. 1952. Extended limit design theorems of continuous media. Q Appl Math 9: 381–389. [CrossRef] [Google Scholar]
  • Duncan JM, Wright SG, Brandon TL. 2014. Soil strength and slope stability. Hoboken, New Jersey: Wiley. [Google Scholar]
  • Faccioli E, Vitiello E. 1973. A finite element, linear programming method for the limit analysis of thin plates. Int J Numer Meth Eng 5: 311–325. [CrossRef] [Google Scholar]
  • Felippa CA. 1994. A survey of parametrized variational principles and applications to computational mechanics. Comput Meth Appl Mech Eng 113(1): 109–139. [CrossRef] [Google Scholar]
  • Fiacco AV, McCormick GP. 1968. Nonlinear programming: Sequential unconstrained minimization techniques. John Wiley and Sons. Republished in 1987 by SIAM, Philadelphia. [Google Scholar]
  • Greenberg HJ, Prager W. 1951. Limit design of beams and frames. Proc ASCE 77: 59. [Google Scholar]
  • Grierson DE, Gladwell GML. 1971. Collapse load analysis using linear programming. J Struct Eng Div ASCE 97(5): 1561–1573. [CrossRef] [Google Scholar]
  • Gvozdev AA. 1960. The determination of the value of the collapse load for statically in determinate systems undergoing plastic deformation. Int J Mech Sci 1: 322–335. (Translated from Russian by R.M. Haythornthwaite). [CrossRef] [Google Scholar]
  • Herskovits J. 1986. A two-stage feasible directions algorithm for nonlinear constrained optimization. Math Progr 36: 19–38. [CrossRef] [Google Scholar]
  • Hill R. 1950. The mathematical theory of plasticity. Clarendon Press. [Google Scholar]
  • Hill R. 1951. On the state of stress in a plastic-rigid body at the yield limit. Philos Mag 7: 868–875. [CrossRef] [Google Scholar]
  • Hoang LC, Nielsen MP. 2011. Limit analysis and concrete plasticity. Boca Ranton: CRC Press. [Google Scholar]
  • Hodge PG, Belytschko T. 1968. Numerical methods for the limit analysis of plates. J Appl Mech 35: 796–802. [CrossRef] [Google Scholar]
  • Karman TV. 1926. Über elastische Grenzzustände. In: Proc. 2nd Int. Conf. Appl. Mech., pp. 23–32. [Google Scholar]
  • Karmarkar N. 1984. A new polynomial-time algorithm for linear programming. Combinatorica 4: 373–395. [CrossRef] [MathSciNet] [Google Scholar]
  • Koopman DCA, Lance RH. 1965. On linear programming and plastic limit analysis. J Mech Phys Solids 13: 77–87. [CrossRef] [Google Scholar]
  • Krabbenhoft K. 2018. Static and seismic earth pressure coefficients for vertical walls with horizontal backfill. Soil Dyna Earthq Eng 104: 403–407. [CrossRef] [Google Scholar]
  • Krabbenhoft K. 2019. Plastic design of embedded retaining walls. Proc Inst Civil Eng-Geotech Eng 172: 131–144. [CrossRef] [Google Scholar]
  • Krabbenhoft K, Damkilde L. 2002. Lower bound limit analysis of slabs with nonlinear yield criteria. Comput Struct 80: 2043–2057. [CrossRef] [Google Scholar]
  • Krabbenhoft K, Damkilde L. 2003. A general nonlinear optimization algorithm for lower bound limit analysis. Int J Numer Meth Eng 56: 165–184. [CrossRef] [Google Scholar]
  • Krabbenhoft K, Lyamin AV. 2012. Computational cam clay plasticity using second-order cone programming. Comput Meth Appl Mech Eng 209-212: 239–249. [CrossRef] [Google Scholar]
  • Krabbenhoft K, Lyamin AV. 2015. Strength reduction finite-element limit analysis. Geotech Lett 5: 250–253. [CrossRef] [Google Scholar]
  • Krabbenhoft K, Lyamin AV, Hjiaj M, Sloan SW. 2005. A new discontinuous upper bound limit analysis formulation. Int J Numer Meth Eng 63: 1069–1088. [CrossRef] [Google Scholar]
  • Krabbenhoft K, Lyamin AV, Sloan SW. 2007a. Formulation and solution of some plasticity problems as conic programs. Int J Solids Struct 44: 1533–1549. [CrossRef] [Google Scholar]
  • Krabbenhoft K, Lyamin AV, Sloan SW, Wriggers P. 2007b. An interior-point method for elastoplasticity. Int J Numer Meth Eng 69: 592–626. [CrossRef] [Google Scholar]
  • Krabbenhoft K, Lyamin AV, Sloan SW. 2008. Three-dimensional Mohr–Coulomb limit analysis using semidefinite programming. Commun Numer Meth Eng 24: 1107–1119. [Google Scholar]
  • Krabbenhoft K, Hain M, Wriggers P. 2008. Computation of effective cement paste diffusivities from microtomographic images. In: Kompis V, ed. Composites with micro- and nano-structure, pp. 281–297. Springer. [CrossRef] [Google Scholar]
  • Krabbenhoft K, Karim MR, Lyamin AV, Sloan SW. 2012. Associated computational plasticity schemes for nonassocited frictional materials. Int J Numer Meth Eng 89: 1089–1117. [CrossRef] [Google Scholar]
  • Lancelotta R. 2002. Analytical solution of passive earth pressure. Geotechnique 52(8): 617–619. [CrossRef] [Google Scholar]
  • Lyamin AV. 1999. Three-dimensional lower bound limit analysis using nonlinear programming. PhD Thesis, University of Newcastle, Australia. [Google Scholar]
  • Lyamin AV, Sloan SW. 2002a. Lower bound limit analysis using non-linear programming. Int J Numer Meth Eng 55: 573–611. [CrossRef] [Google Scholar]
  • Lyamin AV, Sloan SW. 2002b. Upper bound limit analysis using linear finite elements and non-linear programming. Int J Numer Anal Meth Geomech 26: 181–216. [CrossRef] [Google Scholar]
  • Lysmer J. 1970. Limit analysis of plane problems in soil mechanics.J Soil Mech Found Div ASCE 96(SM4): 1311–1334. [CrossRef] [Google Scholar]
  • Makrodimopoulos A. 2020. A fundamental class of stress elements in lower bound limit analysis. Proc Royal Soc A 476(2243): 20200425. [CrossRef] [Google Scholar]
  • Makrodimopoulos A, Martin CM. 2006. Lower bound limit analysis of cohesive-frictional materials using second-order cone programming. Int J Numer Meth Eng 66: 604–634. [CrossRef] [Google Scholar]
  • Makrodimopoulos A, Martin CM. 2007. Upper bound limit analysis using simplex strain elements and second-order cone programming. Int J Numer Meth Eng 31(6): 835–865. [Google Scholar]
  • Martin CM. 2005. Exact bearing capacity calculations using the method of characteristics. In: Barla and Barla, eds. Proc. IACMAG, Turin, pp. 441–450. [Google Scholar]
  • Parikh N, Boyd SP. 2014. Proximal algorithms. Found Trends Optim 1(3): 127–239. [CrossRef] [Google Scholar]
  • Pastor J. 1978. Analyse limite : détermination de solutions statiques complètes – Application au talus vertical. Eur J Mech A/Solids 2: 176–196. [Google Scholar]
  • Pastor J, Turgeman S. 1976. Mise en oeuvre numérique des méthodes de l’analyse limite pour les matériaux de Von Mises et de Coulomb standards en déformation plane. Mech Res Commun 3(6): 469–474. [CrossRef] [Google Scholar]
  • Powrie W. 1997. Soil mechanics: Concepts and applications. London: Spon Press. [Google Scholar]
  • Sloan SW. 1988. Lower bound limit analysis using finite elements and linear programming. Int J Numer Anal Meth Geomech 12: 61–77. [CrossRef] [Google Scholar]
  • Sloan SW. 1989. Upper bound limit analysis using finite elements and linear programming. Int J Numer Anal Meth Geomech 13: 263–282. [CrossRef] [Google Scholar]
  • Sloan SW, Kleeman PW. 1995. Upper bound limit analysis using discontinuous velocity fields. Comput Meth Appl Mech Eng 127: 293–314. [CrossRef] [Google Scholar]
  • Wolpert DH, Macready WG. 1997. No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1): 67–82. [CrossRef] [Google Scholar]
  • Yu HS, Sloan SW, Kleeman PW. 1994. A quadratic element for upper bound limit analysis. Eng Comput 11: 195–212. [CrossRef] [Google Scholar]
  • Zouain N, Herskovits J, Borges LA, Feijóo RA. 1993. An iterative algorithm for limit analysis with nonlinear yield functions. Int J Solids Struct 30(10): 1397–1417. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.